Abstract

The principles and implementation of an alternative approach to tunable diode-laser spectroscopy with wavelength modulation are described. This new technique uses the inherent phase shift between diode-laser power modulation and frequency modulation to separate the residual amplitude modulation and the first derivative signals recovered at the fundamental modulation frequency. The technique, through analysis of the residual-amplitude-modulation signal, is absolute, yielding gas-absorption-line-shape functions, concentrations, and pressures without the need for calibration under certain defined operating conditions. It offers the simplicity of signal analysis of direct detection while providing all the advantages of phase-sensitive electronic detection. Measurements of the 1650.96-nm rotation/vibration-absorption-line-shape function for 1% and 10% methane in nitrogen at various pressures are compared to theoretical predictions derived from HITRAN data, and the excellent agreement confirms the validity of the new technique. Further measurements of concentration and pressure confirm the efficacy of the technique for determining concentration in industrial-process environments where the pressure may be unknown and changing. An analysis of signal strength demonstrates that sensitivity comparable to that of conventional approaches is achievable. The new approach is simpler and more robust in coping with unknown pressure variations and drift in instrumentation parameters (such as laser characteristics) than the conventional approach. As such, it is better suited to stand-alone instrumentation for online deployment in industrial processes and is particularly useful in high-temperature applications, where the background infrared is strong.

© 2007 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. E. D. Hinkley, "High-resolution infrared spectroscopy with a tunable diode laser," Appl. Phys. Lett. 16, 351-354 (1970).
  2. J. Reid, J. Shewchun, B. K. Garside, E. A. Ballik, "High sensitivity pollution detection employing tunable diode lasers," Appl. Opt. 17, 300-307 (1978).
  3. J. Reid, B. K. Garside, J. Shewchun, M. El-Sherbiny, E. A. Ballik, "High sensitivity point monitoring of atmospheric gases employing tunable diode lasers ," Appl. Opt. 17, 1806-1810 (1978).
  4. D. T. Cassidy, J. Reid, "Atmospheric pressure monitoring of trace gases using tunable diode lasers," Appl. Opt. 21, 1185-1190 (1982).
  5. M. Lowenstein, "Diode laser harmonic spectroscopy applied to in situ measurements of atmospheric trace molecules ," J. Quant. Spectrosc. Radiat. Transf. 40, 249-256 (1988).
  6. D. S. Bomse, A. C. Stanton, J. A. Silver, "Frequency modulation and wavelength modulation spectroscopies: Comparison of experimental methods using a lead–salt diode laser," Appl. Opt. 31, 718-731 (1992).
  7. D. T. Cassidy, L. J. Bonnell, "Trace gas detection with short-external-cavity InGaAsP diode laser transmitter modules operating at 1.58 $\mu\hbox{m}$," Appl. Opt. 27, 2688-2693 (1988).
  8. F. S. Pavone, M. Inguscio, "Frequency- and wavelength-modulation spectroscopies: Comparison of experimental methods using an AlGaAs diode laser," Appl. Phys. B, Lasers Opt. 56, 118-122 (1993).
  9. A. Lucchesini, I. Longo, C. Gabbanini, S. Gozzini, L. Moi, "Diode laser spectroscopy of methane overtone transitions," Appl. Opt. 32, 5211-5216 (1993).
  10. A. Lucchesini, M. De Rosa, D. Pellicia, A. Ciucci, C. Gabbanini, S. Gozzini, "Diode laser spectroscopy of overtone bands of acetylene," Appl. Phys. B, Lasers Opt. 63, 227-282 (1996).
  11. M. Gabrysh, C. Corsi, F. S. Pavone, M. Inguscio, "Simultaneous detection of CO and $\hbox{CO}_{2}$ using a semiconductor DFB diode laser at 1.578 $\mu\hbox{m}$," Appl. Phys. B, Lasers Opt. 65, 75-79 (1997).
  12. X. Zhu, D. T. Cassidy, "Modulation spectroscopy with a semiconductor diode laser by injection-current modulation ," J. Opt. Soc. Amer. B, Opt. Phys. 14, 1945-1950 (1997).
  13. B. Culshaw, G. Stewart, F. Dong, C. Tandy, D. Moodie, "Fibre optic techniques for remote spectroscopic methane detection—From concept to system realisation," Sens. Actuators B, Chem. 51, 25-37 (1998).
  14. G. Stewart, C. Tandy, D. Moodie, M. A. Morante, F. Dong, "Design of a fibre optic multi-point sensor for gas detection," Sens. Actuators B, Chem. 51, 227-232 (1998).
  15. P. Werle, "A review of recent advances in semiconductor laser based gas monitors," Spectrochim. Acta A, Mol. Spectrosc. 54, 197-236 (1998).
  16. D. Richter, D. G. Lancaster, F. K. Tittel, "Development of an automated diode laser based multi-component gas sensor," Appl. Opt. 39, 4444-4450 (2000).
  17. S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, R. K. Hanson, "Diode laser sensor for monitoring multiple combustion parameters in pulse detonation engines ," Proc. Combust. Inst. (2000) pp. 587-594.
  18. H. Teichert, T. Fernholtz, V. Ebert, "Simultaneous in situ measurements of CO, $\hbox{H}_{2}\hbox{O}$ and gas temperature in a full sized coal fired power plant by near infrared diode lasers ," Appl. Opt. 42, 2043-2051 (2003).
  19. X. Zhou, X. Liu, J. B. Jeffries, R. K. Hanson, "Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser," Meas. Sci. Technol. 14, 1459-1468 (2003).
  20. J. Reid, D. Labrie, "Second-harmonic detection with tunable diode lasers—Comparison of experiment and theory ," Appl. Phys. B, Lasers Opt. 26, 203-210 (1981).
  21. J. M. Supplee, A. Whittaker, W. Lenth, "Theoretical description of frequency modulation and wavelength modulation spectroscopy ," Appl. Opt. 33, 6294-6302 (1994).
  22. L. C. Philippe, R. K. Hanson, "Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure and velocity in shock-heated oxygen flows," Appl. Opt. 32, 6090-6103 (1993).
  23. I. Linnerud, P. Kaspersen, T. Jaeger, "Gas monitoring in the process industry using diode laser spectroscopy," Appl. Phys. B, Lasers Opt. 67, 297-305 (1998).
  24. P. Kluczynski, O. Axner, "Theoretical description based on Fourier analysis of wavelength—Modulation spectrometry in terms of analytical and background signals," Appl. Opt. 38, 5803-5815 (1999).
  25. P. Kluczynski, A. M. Lindberg, O. Axner, "Characterization of background signals in wavelength—Modulation spectrometry in terms of a Fourier based formalism," Appl. Opt. 40, 770-782 (2001).
  26. P. Kluczynski, A. M. Lindberg, O. Axner, "Background signals in wavelength modulation spectrometry with frequency—Doubled diode-laser light—I. Theory," Appl. Opt. 40, 783-793 (2001).
  27. P. Kluczynski, A. M. Lindberg, O. Axner, "Background signals in wavelength modulation spectrometry by use of frequency—Doubled diode-laser light—II. Experiment," Appl. Opt. 40, 794-805 (2001).
  28. S. Schilt, L. Thevenaz, P. Robert, "Wavelength modulation spectroscopy: Combined frequency and intensity laser modulation ," Appl. Opt. 42, 6728-6738 (2003).
  29. G. Jacobsen, H. Olesen, F. Birkedahl, B. Tromborg, "Current/frequency-modulation characteristics for directly optical frequency-modulated injection lasers at 830 nm and 1.3 $\mu\hbox{m}$," Electron. Lett. 18, 874-876 (1982).
  30. S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, "Direct frequency modulation in AlGaAs semiconductor lasers," IEEE J. Quantum Electron. QE-18, 582-595 (1982).
  31. T. Fernholtz, H. Teichert, V. Ebert, "Digital, phase-sensitive detection for in situ diode laser spectroscopy under rapidly changing transmission conditions," Appl. Phys. B, Lasers Opt. 75, 229-236 (2002).
  32. H. Li, G. B. Rieker, X. Liu, B. Jeffries, R. K. Hanson, "Extension of wavelength-modulations spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases," Appl. Opt. 45, 1052-1061 (2006).
  33. O. E. Myers, E. J. Putzer, "Measurement broadening in magnetic resonance," J. Appl. Phys. 30, 1891-1897 (1959).
  34. A. M. Russel, D. A. Torrchia, "Harmonic analysis in systems using phase sensitive detectors," Rev. Sci. Instrum. 33, 442-444 (1962).
  35. L. S. Rothman, "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
  36. K. Duffin, Wavelength modulation spectroscopy with tunable diode lasers: A calibration free approach to the recovery of absolute gas absorption lineshapes Ph.D. dissertation EEE Dept., Univ. StrathclydeGlasgowU.K. (2007).
  37. H. Wahlquist, "Modulation broadening of unsaturated Lorentzian lines," J. Chem. Phys. 35, 1708-1710 (1961).
  38. W. Jin, Y. Z. Xu, M. S. Demokan, G. Stewart, "Investigation of interferometric noise in fibre optic gas sensors using wavelength modulation spectroscopy," Appl. Opt. 36, 7239-7246 (1997).

2006 (1)

2005 (1)

L. S. Rothman, "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).

2003 (3)

2002 (1)

T. Fernholtz, H. Teichert, V. Ebert, "Digital, phase-sensitive detection for in situ diode laser spectroscopy under rapidly changing transmission conditions," Appl. Phys. B, Lasers Opt. 75, 229-236 (2002).

2001 (3)

2000 (1)

1999 (1)

1998 (4)

I. Linnerud, P. Kaspersen, T. Jaeger, "Gas monitoring in the process industry using diode laser spectroscopy," Appl. Phys. B, Lasers Opt. 67, 297-305 (1998).

B. Culshaw, G. Stewart, F. Dong, C. Tandy, D. Moodie, "Fibre optic techniques for remote spectroscopic methane detection—From concept to system realisation," Sens. Actuators B, Chem. 51, 25-37 (1998).

G. Stewart, C. Tandy, D. Moodie, M. A. Morante, F. Dong, "Design of a fibre optic multi-point sensor for gas detection," Sens. Actuators B, Chem. 51, 227-232 (1998).

P. Werle, "A review of recent advances in semiconductor laser based gas monitors," Spectrochim. Acta A, Mol. Spectrosc. 54, 197-236 (1998).

1997 (3)

M. Gabrysh, C. Corsi, F. S. Pavone, M. Inguscio, "Simultaneous detection of CO and $\hbox{CO}_{2}$ using a semiconductor DFB diode laser at 1.578 $\mu\hbox{m}$," Appl. Phys. B, Lasers Opt. 65, 75-79 (1997).

X. Zhu, D. T. Cassidy, "Modulation spectroscopy with a semiconductor diode laser by injection-current modulation ," J. Opt. Soc. Amer. B, Opt. Phys. 14, 1945-1950 (1997).

W. Jin, Y. Z. Xu, M. S. Demokan, G. Stewart, "Investigation of interferometric noise in fibre optic gas sensors using wavelength modulation spectroscopy," Appl. Opt. 36, 7239-7246 (1997).

1996 (1)

A. Lucchesini, M. De Rosa, D. Pellicia, A. Ciucci, C. Gabbanini, S. Gozzini, "Diode laser spectroscopy of overtone bands of acetylene," Appl. Phys. B, Lasers Opt. 63, 227-282 (1996).

1994 (1)

1993 (3)

1992 (1)

1988 (2)

D. T. Cassidy, L. J. Bonnell, "Trace gas detection with short-external-cavity InGaAsP diode laser transmitter modules operating at 1.58 $\mu\hbox{m}$," Appl. Opt. 27, 2688-2693 (1988).

M. Lowenstein, "Diode laser harmonic spectroscopy applied to in situ measurements of atmospheric trace molecules ," J. Quant. Spectrosc. Radiat. Transf. 40, 249-256 (1988).

1982 (3)

D. T. Cassidy, J. Reid, "Atmospheric pressure monitoring of trace gases using tunable diode lasers," Appl. Opt. 21, 1185-1190 (1982).

G. Jacobsen, H. Olesen, F. Birkedahl, B. Tromborg, "Current/frequency-modulation characteristics for directly optical frequency-modulated injection lasers at 830 nm and 1.3 $\mu\hbox{m}$," Electron. Lett. 18, 874-876 (1982).

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, "Direct frequency modulation in AlGaAs semiconductor lasers," IEEE J. Quantum Electron. QE-18, 582-595 (1982).

1981 (1)

J. Reid, D. Labrie, "Second-harmonic detection with tunable diode lasers—Comparison of experiment and theory ," Appl. Phys. B, Lasers Opt. 26, 203-210 (1981).

1978 (2)

1970 (1)

E. D. Hinkley, "High-resolution infrared spectroscopy with a tunable diode laser," Appl. Phys. Lett. 16, 351-354 (1970).

1962 (1)

A. M. Russel, D. A. Torrchia, "Harmonic analysis in systems using phase sensitive detectors," Rev. Sci. Instrum. 33, 442-444 (1962).

1961 (1)

H. Wahlquist, "Modulation broadening of unsaturated Lorentzian lines," J. Chem. Phys. 35, 1708-1710 (1961).

1959 (1)

O. E. Myers, E. J. Putzer, "Measurement broadening in magnetic resonance," J. Appl. Phys. 30, 1891-1897 (1959).

Appl. Opt. (17)

J. Reid, J. Shewchun, B. K. Garside, E. A. Ballik, "High sensitivity pollution detection employing tunable diode lasers," Appl. Opt. 17, 300-307 (1978).

J. Reid, B. K. Garside, J. Shewchun, M. El-Sherbiny, E. A. Ballik, "High sensitivity point monitoring of atmospheric gases employing tunable diode lasers ," Appl. Opt. 17, 1806-1810 (1978).

D. T. Cassidy, J. Reid, "Atmospheric pressure monitoring of trace gases using tunable diode lasers," Appl. Opt. 21, 1185-1190 (1982).

A. Lucchesini, I. Longo, C. Gabbanini, S. Gozzini, L. Moi, "Diode laser spectroscopy of methane overtone transitions," Appl. Opt. 32, 5211-5216 (1993).

D. S. Bomse, A. C. Stanton, J. A. Silver, "Frequency modulation and wavelength modulation spectroscopies: Comparison of experimental methods using a lead–salt diode laser," Appl. Opt. 31, 718-731 (1992).

D. T. Cassidy, L. J. Bonnell, "Trace gas detection with short-external-cavity InGaAsP diode laser transmitter modules operating at 1.58 $\mu\hbox{m}$," Appl. Opt. 27, 2688-2693 (1988).

D. Richter, D. G. Lancaster, F. K. Tittel, "Development of an automated diode laser based multi-component gas sensor," Appl. Opt. 39, 4444-4450 (2000).

H. Teichert, T. Fernholtz, V. Ebert, "Simultaneous in situ measurements of CO, $\hbox{H}_{2}\hbox{O}$ and gas temperature in a full sized coal fired power plant by near infrared diode lasers ," Appl. Opt. 42, 2043-2051 (2003).

P. Kluczynski, O. Axner, "Theoretical description based on Fourier analysis of wavelength—Modulation spectrometry in terms of analytical and background signals," Appl. Opt. 38, 5803-5815 (1999).

P. Kluczynski, A. M. Lindberg, O. Axner, "Characterization of background signals in wavelength—Modulation spectrometry in terms of a Fourier based formalism," Appl. Opt. 40, 770-782 (2001).

P. Kluczynski, A. M. Lindberg, O. Axner, "Background signals in wavelength modulation spectrometry with frequency—Doubled diode-laser light—I. Theory," Appl. Opt. 40, 783-793 (2001).

P. Kluczynski, A. M. Lindberg, O. Axner, "Background signals in wavelength modulation spectrometry by use of frequency—Doubled diode-laser light—II. Experiment," Appl. Opt. 40, 794-805 (2001).

S. Schilt, L. Thevenaz, P. Robert, "Wavelength modulation spectroscopy: Combined frequency and intensity laser modulation ," Appl. Opt. 42, 6728-6738 (2003).

J. M. Supplee, A. Whittaker, W. Lenth, "Theoretical description of frequency modulation and wavelength modulation spectroscopy ," Appl. Opt. 33, 6294-6302 (1994).

L. C. Philippe, R. K. Hanson, "Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure and velocity in shock-heated oxygen flows," Appl. Opt. 32, 6090-6103 (1993).

H. Li, G. B. Rieker, X. Liu, B. Jeffries, R. K. Hanson, "Extension of wavelength-modulations spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases," Appl. Opt. 45, 1052-1061 (2006).

W. Jin, Y. Z. Xu, M. S. Demokan, G. Stewart, "Investigation of interferometric noise in fibre optic gas sensors using wavelength modulation spectroscopy," Appl. Opt. 36, 7239-7246 (1997).

Appl. Phys. B, Lasers Opt. (6)

T. Fernholtz, H. Teichert, V. Ebert, "Digital, phase-sensitive detection for in situ diode laser spectroscopy under rapidly changing transmission conditions," Appl. Phys. B, Lasers Opt. 75, 229-236 (2002).

I. Linnerud, P. Kaspersen, T. Jaeger, "Gas monitoring in the process industry using diode laser spectroscopy," Appl. Phys. B, Lasers Opt. 67, 297-305 (1998).

J. Reid, D. Labrie, "Second-harmonic detection with tunable diode lasers—Comparison of experiment and theory ," Appl. Phys. B, Lasers Opt. 26, 203-210 (1981).

F. S. Pavone, M. Inguscio, "Frequency- and wavelength-modulation spectroscopies: Comparison of experimental methods using an AlGaAs diode laser," Appl. Phys. B, Lasers Opt. 56, 118-122 (1993).

A. Lucchesini, M. De Rosa, D. Pellicia, A. Ciucci, C. Gabbanini, S. Gozzini, "Diode laser spectroscopy of overtone bands of acetylene," Appl. Phys. B, Lasers Opt. 63, 227-282 (1996).

M. Gabrysh, C. Corsi, F. S. Pavone, M. Inguscio, "Simultaneous detection of CO and $\hbox{CO}_{2}$ using a semiconductor DFB diode laser at 1.578 $\mu\hbox{m}$," Appl. Phys. B, Lasers Opt. 65, 75-79 (1997).

Appl. Phys. Lett. (1)

E. D. Hinkley, "High-resolution infrared spectroscopy with a tunable diode laser," Appl. Phys. Lett. 16, 351-354 (1970).

Electron. Lett. (1)

G. Jacobsen, H. Olesen, F. Birkedahl, B. Tromborg, "Current/frequency-modulation characteristics for directly optical frequency-modulated injection lasers at 830 nm and 1.3 $\mu\hbox{m}$," Electron. Lett. 18, 874-876 (1982).

IEEE J. Quantum Electron. (1)

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, "Direct frequency modulation in AlGaAs semiconductor lasers," IEEE J. Quantum Electron. QE-18, 582-595 (1982).

J. Appl. Phys. (1)

O. E. Myers, E. J. Putzer, "Measurement broadening in magnetic resonance," J. Appl. Phys. 30, 1891-1897 (1959).

J. Chem. Phys. (1)

H. Wahlquist, "Modulation broadening of unsaturated Lorentzian lines," J. Chem. Phys. 35, 1708-1710 (1961).

J. Opt. Soc. Amer. B, Opt. Phys. (1)

X. Zhu, D. T. Cassidy, "Modulation spectroscopy with a semiconductor diode laser by injection-current modulation ," J. Opt. Soc. Amer. B, Opt. Phys. 14, 1945-1950 (1997).

J. Quant. Spectrosc. Radiat. Transf. (2)

M. Lowenstein, "Diode laser harmonic spectroscopy applied to in situ measurements of atmospheric trace molecules ," J. Quant. Spectrosc. Radiat. Transf. 40, 249-256 (1988).

L. S. Rothman, "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).

Meas. Sci. Technol. (1)

X. Zhou, X. Liu, J. B. Jeffries, R. K. Hanson, "Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser," Meas. Sci. Technol. 14, 1459-1468 (2003).

Rev. Sci. Instrum. (1)

A. M. Russel, D. A. Torrchia, "Harmonic analysis in systems using phase sensitive detectors," Rev. Sci. Instrum. 33, 442-444 (1962).

Sens. Actuators B, Chem. (2)

B. Culshaw, G. Stewart, F. Dong, C. Tandy, D. Moodie, "Fibre optic techniques for remote spectroscopic methane detection—From concept to system realisation," Sens. Actuators B, Chem. 51, 25-37 (1998).

G. Stewart, C. Tandy, D. Moodie, M. A. Morante, F. Dong, "Design of a fibre optic multi-point sensor for gas detection," Sens. Actuators B, Chem. 51, 227-232 (1998).

Spectrochim. Acta A, Mol. Spectrosc. (1)

P. Werle, "A review of recent advances in semiconductor laser based gas monitors," Spectrochim. Acta A, Mol. Spectrosc. 54, 197-236 (1998).

Other (2)

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, R. K. Hanson, "Diode laser sensor for monitoring multiple combustion parameters in pulse detonation engines ," Proc. Combust. Inst. (2000) pp. 587-594.

K. Duffin, Wavelength modulation spectroscopy with tunable diode lasers: A calibration free approach to the recovery of absolute gas absorption lineshapes Ph.D. dissertation EEE Dept., Univ. StrathclydeGlasgowU.K. (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.