Abstract

The signal-to-noise ratio and bandwidth of photonic time-stretch (PTS) systems have previously been limited due to the nonlinear distortion caused by modulator response and dispersive propagation. In this paper, we present a novel method for the reconstruction of the input signal from two phase-diverse intensity measurements. The method consists of optical phase retrieval at the measurement point followed by simulated optical backpropagation to the modulation point. By numerical simulation of a PTS system with realistic parameters, we analyze the proposed method and compare it with the previously suggested maximum ratio combining (MRC) method. We show that the proposed optical backpropagation method, unlike the MRC method that treats the system as being linear from electrical input to output, can reconstruct the signal even at a large modulation depth and that the method is insensitive to biasing error or drift and not overly sensitive to misestimation of system parameters. Furthermore, to reduce the computational effort associated with the simulation of PTS systems, we present a numerical propagation method whereby the required number of sampling points is reduced by several orders of magnitude.

© 2007 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. T. Konishi, Y. Ichioka, "Optical spectrogram scope using time-to-two-dimensional space conversion and interferometric time-of-flight cross correlation," Opt. Rev. 6, 507-512 (1999).
  2. P. O'Shea, M. Kimmel, X. Gu, R. Trebino, "Highly simplified device for ultrashort-pulse measurement," Opt. Lett. 26, 932-934 (2001).
  3. B. H. Kolner, "Space-time duality and the theory of temporal imaging," IEEE J. Quantum Electron. 30, 1951-1963 (1994).
  4. C. Bennett, B. Kolner, "Upconversion time microscope demonstrating 103$\times$ -magnification of femtosecond waveforms," Opt. Lett. 24, 783-785 (1999).
  5. C. Bennett, B. Kolner, "Principles of parametric temporal imaging—Part I: System configurations," IEEE J. Quantum Electron. 36, 430-437 (2000).
  6. C. Bennett, B. Kolner, "Principles of parametric temporal imaging—Part II: System performance," IEEE J. Quantum Electron. 36, 649-655 (2000).
  7. F. Coppinger, A. Bhushan, B. Jalali, "Time magnification of electrical signals using chirped optical pulses," Electron. Lett. 34, 399-400 (1998).
  8. D. Chang, H. Fetterman, H. Erlig, M. Oh, C. Zhang, W. Steier, L. Dalton, "Time stretching of 102-GHz millimeter waves using novel 1.55-$\mu\hbox{m}$ polymer electrooptic modulator," IEEE Photon. Technol. Lett. 12, 537-539 (2000).
  9. Y. Han, B. Jalali, "Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations," J. Lightw. Technol. 21, 3085-3103 (2003).
  10. J. Azana, N. Berger, B. Levit, B. Fischer, "Spectro-temporal imaging of optical pulses with a single time lens," IEEE Photon. Technol. Lett. 16, 882-884 (2004).
  11. Y. Han, O. Boyraz, B. Jalali, "Real-time A/D conversion at 480 Gsample/s using the phase-diversity photonic time-stretch system ," IEEE Int. Topical MWP Tech. Dig. (2004) pp. 186-189.
  12. Y. Han, O. Boyraz, B. Jalali, "Ultrawide-band photonic time-stretch A/D converter employing phase diversity," IEEE Trans. Microw. Theory Tech. 53, I1404-1408 (2005).
  13. G. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002).
  14. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  15. P. Juodawlkis, J. Twichell, G. Betts, J. Hargreaves, R. Younger, J. Wasserman, F. O'Donnell, K. Ray, R. Williamson, "Optically sampled analog-to-digital converters," IEEE Trans. Microw. Theory Tech. 49, 1840-1853 (2001).
  16. IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters IEEE Std. 1241-2000 (2001).
  17. http: www.fftw.com retrieved on 7 Aug. 2006.

2005 (1)

Y. Han, O. Boyraz, B. Jalali, "Ultrawide-band photonic time-stretch A/D converter employing phase diversity," IEEE Trans. Microw. Theory Tech. 53, I1404-1408 (2005).

2004 (1)

J. Azana, N. Berger, B. Levit, B. Fischer, "Spectro-temporal imaging of optical pulses with a single time lens," IEEE Photon. Technol. Lett. 16, 882-884 (2004).

2003 (1)

Y. Han, B. Jalali, "Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations," J. Lightw. Technol. 21, 3085-3103 (2003).

2001 (2)

P. O'Shea, M. Kimmel, X. Gu, R. Trebino, "Highly simplified device for ultrashort-pulse measurement," Opt. Lett. 26, 932-934 (2001).

P. Juodawlkis, J. Twichell, G. Betts, J. Hargreaves, R. Younger, J. Wasserman, F. O'Donnell, K. Ray, R. Williamson, "Optically sampled analog-to-digital converters," IEEE Trans. Microw. Theory Tech. 49, 1840-1853 (2001).

2000 (3)

D. Chang, H. Fetterman, H. Erlig, M. Oh, C. Zhang, W. Steier, L. Dalton, "Time stretching of 102-GHz millimeter waves using novel 1.55-$\mu\hbox{m}$ polymer electrooptic modulator," IEEE Photon. Technol. Lett. 12, 537-539 (2000).

C. Bennett, B. Kolner, "Principles of parametric temporal imaging—Part I: System configurations," IEEE J. Quantum Electron. 36, 430-437 (2000).

C. Bennett, B. Kolner, "Principles of parametric temporal imaging—Part II: System performance," IEEE J. Quantum Electron. 36, 649-655 (2000).

1999 (2)

T. Konishi, Y. Ichioka, "Optical spectrogram scope using time-to-two-dimensional space conversion and interferometric time-of-flight cross correlation," Opt. Rev. 6, 507-512 (1999).

C. Bennett, B. Kolner, "Upconversion time microscope demonstrating 103$\times$ -magnification of femtosecond waveforms," Opt. Lett. 24, 783-785 (1999).

1998 (1)

F. Coppinger, A. Bhushan, B. Jalali, "Time magnification of electrical signals using chirped optical pulses," Electron. Lett. 34, 399-400 (1998).

1994 (1)

B. H. Kolner, "Space-time duality and the theory of temporal imaging," IEEE J. Quantum Electron. 30, 1951-1963 (1994).

Electron. Lett. (1)

F. Coppinger, A. Bhushan, B. Jalali, "Time magnification of electrical signals using chirped optical pulses," Electron. Lett. 34, 399-400 (1998).

IEEE J. Quantum Electron. (3)

C. Bennett, B. Kolner, "Principles of parametric temporal imaging—Part I: System configurations," IEEE J. Quantum Electron. 36, 430-437 (2000).

C. Bennett, B. Kolner, "Principles of parametric temporal imaging—Part II: System performance," IEEE J. Quantum Electron. 36, 649-655 (2000).

B. H. Kolner, "Space-time duality and the theory of temporal imaging," IEEE J. Quantum Electron. 30, 1951-1963 (1994).

IEEE Photon. Technol. Lett. (2)

D. Chang, H. Fetterman, H. Erlig, M. Oh, C. Zhang, W. Steier, L. Dalton, "Time stretching of 102-GHz millimeter waves using novel 1.55-$\mu\hbox{m}$ polymer electrooptic modulator," IEEE Photon. Technol. Lett. 12, 537-539 (2000).

J. Azana, N. Berger, B. Levit, B. Fischer, "Spectro-temporal imaging of optical pulses with a single time lens," IEEE Photon. Technol. Lett. 16, 882-884 (2004).

IEEE Trans. Microw. Theory Tech. (2)

Y. Han, O. Boyraz, B. Jalali, "Ultrawide-band photonic time-stretch A/D converter employing phase diversity," IEEE Trans. Microw. Theory Tech. 53, I1404-1408 (2005).

P. Juodawlkis, J. Twichell, G. Betts, J. Hargreaves, R. Younger, J. Wasserman, F. O'Donnell, K. Ray, R. Williamson, "Optically sampled analog-to-digital converters," IEEE Trans. Microw. Theory Tech. 49, 1840-1853 (2001).

J. Lightw. Technol. (1)

Y. Han, B. Jalali, "Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations," J. Lightw. Technol. 21, 3085-3103 (2003).

Opt. Lett. (2)

Opt. Rev. (1)

T. Konishi, Y. Ichioka, "Optical spectrogram scope using time-to-two-dimensional space conversion and interferometric time-of-flight cross correlation," Opt. Rev. 6, 507-512 (1999).

Other (5)

IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters IEEE Std. 1241-2000 (2001).

http: www.fftw.com retrieved on 7 Aug. 2006.

G. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Y. Han, O. Boyraz, B. Jalali, "Real-time A/D conversion at 480 Gsample/s using the phase-diversity photonic time-stretch system ," IEEE Int. Topical MWP Tech. Dig. (2004) pp. 186-189.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.