Abstract

We propose and experimentally demonstrate a novel bidirectional wavelength-division-multiplexed passive optical network architecture that fully utilizes the superior optical properties of an incoherent continuous-wave (CW) supercontinuum (SC) source. The proposed architecture, which incorporates low-cost Fabry–Pérot laser diodes that have been wavelength locked by spectrum-sliced beams from a depolarized 130-nm-bandwidth CW SC source, is based on a unique wavelength band allocation scheme of the C-band for an optical line terminal (OLT), the L-band for optical network units (ONUs), and the U-band for channel monitoring. A cost-effective network that features a single broadband source at the OLT, and no additional wavelength-band-selective monitoring beam reflector at each ONU can be readily achieved. The experimental demonstration presented in this paper is carried out at a data rate of 622 Mb/s over a 25-km standard single-mode fiber.

© 2007 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription