Abstract

The propagation characteristics of near-Z-axis lithium-niobate waveguides are investigated, considering the finite crystallographic-alignment tolerances. We expand on the previous models that have considered only the departures from the Z-axis in the plane of the substrate (“yaw”) to include the effects of “pitch” and “roll.” We find that a combination of yaw and pitch couples the major electric-field components of the fundamental quasi-TE and quasi-TM modes through off-diagonal permittivity components. When these two rotations are both larger than ~0.1°, the imaginary coupling coefficient associated with the overlap of the major field components becomes larger than the real coefficient, associated with the coupling of the longitudinal TM component to the transverse TE component, that results from yaw alone. We show numerically, as well as experimentally, that unintentional crystallographic-alignment errors can result in substantial mode conversion, affecting the extinction ratio and linearity of Z-propagating modulators. The results also indicate that waveguides with intentional yaw will have mode-conversion characteristics that are highly sensitive to any unintentional pitch resulting from the boule slicing/polishing process. We highlight the importance of crystallographic alignment as well as the role of modal birefringence in suppressing undesired mode conversion.

© 2007 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. S. Thaniyavarn, "Wavelength-independent, optical-damage-immune $\hbox{LiNbO}_{3}$ TE–TM mode converter," Opt. Lett. 11, 39-41 (1986).
  2. T. Kawazoe, K. Satoh, I. Hayashi, H. Mori, "Fabrication of integrated-optic polarization controller using Z-propagating $\hbox{Ti-LiNbO}_{3}$ waveguides," J. Lightw. Technol. 10, 51-56 (1992).
  3. V. Voinot, R. Ferriere, J. P. Goedgebuer, "Fabrication of integrated-optic polarization controller using Z-propagating $\hbox{Ti-LiNbO}_{3}$ waveguides," Electron. Lett. 34, 549-550 (1998).
  4. N. A. F. Jaeger, F. Rahmatian, "Integrated optics Pockels cell high-voltage sensor," IEEE Trans. Power Del. 10, 127-134 (1995).
  5. J. D. Bull, N. A. F. Jaeger, F. Rahmatian, "A new hybrid current sensor for high-voltage applications," IEEE Trans. Power Del. 20, 32-38 (2005).
  6. A. Donaldson, K. K. Wong, "Phase-matched mode convertor in $\hbox{LiNbO}_{3}$ using near-Z-axis propagation," Electron. Lett. 23, 1378-1379 (1987).
  7. A. Donaldson, P. D. Dow, "Integrated optical polarization controller chip in $\hbox{LiNbO}_{3}$ using a near Z axis propagation direction," Proc. SPIE 993, 117-125 (1988).
  8. J. Ctyroky, "Analysis of polarization effects in near-Z-axis Ti: $\hbox{LiNbO}_{3}$ devices," J. Opt. Commun. 14, 32-38 (1993).
  9. S. Bhandare, R. Noé, D. Sandel, "Origin of reciprocal circular birefringence observed in $X$- cut, Z-propagation $\hbox{LiNbO}_{3}$ polarization transformers," Appl. Phys. B, Photophys. Laser Chem. 73, 549-553 (2001).
  10. R. S. Weis, T. K. Gaylord, "Lithium niobate: Summary of physical properties and crystal structure," Appl. Phys. A, Solids Surf. 37, 191-203 (1985).
  11. A. Yariv, Optical Electronics in Modern Communications (Oxford Univ. Press, 1997) pp. 515-518.
  12. D. Marcuse, "Coupled-mode theory for anisotropic optical waveguides," Bell Syst. Tech. J. 54, 985-995 (1974).
  13. O. Ogawa, T. Sowa, S. Ichizono, "A guided-wave optical electric field sensor with improved temperature stability," J. Lightw. Technol. 17, 823-830 (1999).

2005 (1)

J. D. Bull, N. A. F. Jaeger, F. Rahmatian, "A new hybrid current sensor for high-voltage applications," IEEE Trans. Power Del. 20, 32-38 (2005).

2001 (1)

S. Bhandare, R. Noé, D. Sandel, "Origin of reciprocal circular birefringence observed in $X$- cut, Z-propagation $\hbox{LiNbO}_{3}$ polarization transformers," Appl. Phys. B, Photophys. Laser Chem. 73, 549-553 (2001).

1999 (1)

O. Ogawa, T. Sowa, S. Ichizono, "A guided-wave optical electric field sensor with improved temperature stability," J. Lightw. Technol. 17, 823-830 (1999).

1998 (1)

V. Voinot, R. Ferriere, J. P. Goedgebuer, "Fabrication of integrated-optic polarization controller using Z-propagating $\hbox{Ti-LiNbO}_{3}$ waveguides," Electron. Lett. 34, 549-550 (1998).

1995 (1)

N. A. F. Jaeger, F. Rahmatian, "Integrated optics Pockels cell high-voltage sensor," IEEE Trans. Power Del. 10, 127-134 (1995).

1993 (1)

J. Ctyroky, "Analysis of polarization effects in near-Z-axis Ti: $\hbox{LiNbO}_{3}$ devices," J. Opt. Commun. 14, 32-38 (1993).

1992 (1)

T. Kawazoe, K. Satoh, I. Hayashi, H. Mori, "Fabrication of integrated-optic polarization controller using Z-propagating $\hbox{Ti-LiNbO}_{3}$ waveguides," J. Lightw. Technol. 10, 51-56 (1992).

1988 (1)

A. Donaldson, P. D. Dow, "Integrated optical polarization controller chip in $\hbox{LiNbO}_{3}$ using a near Z axis propagation direction," Proc. SPIE 993, 117-125 (1988).

1987 (1)

A. Donaldson, K. K. Wong, "Phase-matched mode convertor in $\hbox{LiNbO}_{3}$ using near-Z-axis propagation," Electron. Lett. 23, 1378-1379 (1987).

1986 (1)

1985 (1)

R. S. Weis, T. K. Gaylord, "Lithium niobate: Summary of physical properties and crystal structure," Appl. Phys. A, Solids Surf. 37, 191-203 (1985).

1974 (1)

D. Marcuse, "Coupled-mode theory for anisotropic optical waveguides," Bell Syst. Tech. J. 54, 985-995 (1974).

Appl. Phys. A, Solids Surf. (1)

R. S. Weis, T. K. Gaylord, "Lithium niobate: Summary of physical properties and crystal structure," Appl. Phys. A, Solids Surf. 37, 191-203 (1985).

Appl. Phys. B, Photophys. Laser Chem. (1)

S. Bhandare, R. Noé, D. Sandel, "Origin of reciprocal circular birefringence observed in $X$- cut, Z-propagation $\hbox{LiNbO}_{3}$ polarization transformers," Appl. Phys. B, Photophys. Laser Chem. 73, 549-553 (2001).

Bell Syst. Tech. J. (1)

D. Marcuse, "Coupled-mode theory for anisotropic optical waveguides," Bell Syst. Tech. J. 54, 985-995 (1974).

Electron. Lett. (2)

A. Donaldson, K. K. Wong, "Phase-matched mode convertor in $\hbox{LiNbO}_{3}$ using near-Z-axis propagation," Electron. Lett. 23, 1378-1379 (1987).

V. Voinot, R. Ferriere, J. P. Goedgebuer, "Fabrication of integrated-optic polarization controller using Z-propagating $\hbox{Ti-LiNbO}_{3}$ waveguides," Electron. Lett. 34, 549-550 (1998).

IEEE Trans. Power Del. (2)

N. A. F. Jaeger, F. Rahmatian, "Integrated optics Pockels cell high-voltage sensor," IEEE Trans. Power Del. 10, 127-134 (1995).

J. D. Bull, N. A. F. Jaeger, F. Rahmatian, "A new hybrid current sensor for high-voltage applications," IEEE Trans. Power Del. 20, 32-38 (2005).

J. Lightw. Technol. (2)

T. Kawazoe, K. Satoh, I. Hayashi, H. Mori, "Fabrication of integrated-optic polarization controller using Z-propagating $\hbox{Ti-LiNbO}_{3}$ waveguides," J. Lightw. Technol. 10, 51-56 (1992).

O. Ogawa, T. Sowa, S. Ichizono, "A guided-wave optical electric field sensor with improved temperature stability," J. Lightw. Technol. 17, 823-830 (1999).

J. Opt. Commun. (1)

J. Ctyroky, "Analysis of polarization effects in near-Z-axis Ti: $\hbox{LiNbO}_{3}$ devices," J. Opt. Commun. 14, 32-38 (1993).

Opt. Lett. (1)

Proc. SPIE (1)

A. Donaldson, P. D. Dow, "Integrated optical polarization controller chip in $\hbox{LiNbO}_{3}$ using a near Z axis propagation direction," Proc. SPIE 993, 117-125 (1988).

Other (1)

A. Yariv, Optical Electronics in Modern Communications (Oxford Univ. Press, 1997) pp. 515-518.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.