Abstract

An all-optical wavelength converter with a large wavelength hopping range is proposed and demonstrated. This converter consists of multistage cascaded wavelength converters using semiconductor optical amplifiers each with different gain band. Each of the cascaded wavelength converters enables us to perform both noninverted (NIV) and inverted (IV) operations. Conversion performance is compared at NIV and IV operations in terms of static characteristics as a function of input/output power of the converter. While good conversion performances are achieved at both operations, the IV wavelength conversion has better cascadability to obtain a high-quality converted signal for the cascaded scheme. Moreover, signal amplitude regeneration is demonstrated by repeating the IV wavelength conversion. Finally, we successfully demonstrate, for the first time, ultrawideband wavelength conversion, including over 300-nm wavelength hopping to the shorter wavelength side with a triple-stage cascaded wavelength converter.

© 2007 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightw. Technol. 14, 955-966 (1996).
  2. B. Ramamurthy, B. Mukherjee, "Wavelength conversion in WDM networking," IEEE J. Sel. Areas Commun. 16, 1061-1073 (1998).
  3. R. Ramaswami, K. N. Sivarajan, Optical Networks: A Practical Perspective (Morgan Kaufmann, 1998).
  4. H. Takara, T. Ohara, T. Yamamoto, H. Masuda, M. Abe, H. Takahashi, T. Morioka, "Field demonstration of over 1000-channel DWDM transmission with supercontinuum multi-carrier source," Electron. Lett. 41, 270-271 (2005).
  5. H. Kawata, H. Nakamura, T. Sugie, "Service multiplexing systems with widepassband WDM technology for access networks," IEICE Trans. Commun. E83-B, 2348-2354 (2000).
  6. S. Watanabe, F. Futami, "All-optical wavelength conversion using ultra-fast nonlinearities in optical fiber," IEICE Trans. Electron. E85-C, 889-895 (2002).
  7. D. Mahgerefteh, M. W. Chbat, "All-optical 1.5 μm to 1.3 $\mu \hbox{m}$ wavelength conversion in a walk-off compensating nonlinear optical loop mirror ," IEEE Photon. Technol. Lett. 7, 497-499 (1995).
  8. O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, S. Namiki, "Efficient FWM based broadband wavelength conversion using a short high-nonlinearity fiber ," IEICE Trans. Electron. E83-C, 816-823 (2000).
  9. A. Zhang, M. S. Demonkan, "Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber," Opt. Lett. 30, 2375-2377 (2005).
  10. C. H. Kwok, S. H. Lee, K. K. Chow, C. Shu, C. Lin, A. Bjarklev, "Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM ," IEEE Photon. Technol. Lett. 17, 2655-2657 (2005).
  11. C. H. Kwok, C. W. Chow, H. K. Tsang, C. Lin, "Nonlinear polarization rotation in a dispersion-flattened photonic-crystal fiber for ultrawideband (> 100 nm) all-optical wavelength conversion of 10 Gb/s nonreturn-to-zero signals," Opt. Lett. 31, 1782-1784 (2006).
  12. M. Hirano, T. Nakanishi, T. Okuno, M. Onishi, "Broadband wavelength conversion over 193-nm by HNL-DSF improving higher-order dispersion performance," Proc. ECOC (2005) pp. 43-44.
  13. T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightw. Technol. 14, 942-954 (1996).
  14. P. E. Barnsley, P. J. Fiddyment, "Wavelength conversion from 1.3 to 1.55 μm using split contact optical amplifiers," IEEE Photon. Technol. Lett. 3, 256-258 (1991).
  15. T. J. Morgan, R. S. Tucker, J. P. R. Lacey, "All-optical wavelength translation over 80 nm at 2.5 Gb/s using four-wave mixing in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 11, 982-984 (1999).
  16. A. Bilenca, R. Alizon, V. Mikhelashhvili, D. Dahan, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, A. Forchel, "Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-InP quantumdash semiconductor optical amplifiers operating at 1550 nm," IEEE Photon. Technol. Lett. 15, 563-565 (2003).
  17. J. P. R. Lacey, G. J. Pendock, R. S. Tucker, "All-optical 1300-nm to 1550-nm wavelength conversion using cross-phase modulation in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 8, 885-887 (1996).
  18. M. Matsuura, N. Kishi, T. Miki, "Proposal for broadband wavelength conversion by utilizing multi-stage cascaded SOA-based wavelength converters," Proc. OECC (2005) pp. 634-635.
  19. M. Matsuura, N. Kishi, T. Miki, "All-optical wavelength conversion with large wavelength hopping by utilizing multistage cascaded SOA-based wavelength converters," IEEE Photon. Technol. Lett. 18, 926-928 (2006).
  20. M. Matsuura, N. Kishi, T. Miki, "Ultra-wideband wavelength conversion over 300 nm by cascaded SOA-based wavelength converters ," Proc. OFC/NFOEC (2006) pp. 1-3.
  21. M. F. C. Stephens, M. Asghari, R. V. Penty, I. H. White, "Demonstration of ultrafast all-optical wavelength conversion utilizing birefringence in semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 10, 346-348 (1998).
  22. H. Soto, D. Erasme, G. Guekos, "Cross-polarization modulation in semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 11, 970-972 (1999).
  23. Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, H. J. S. Dorren, "Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier," IEEE Photon. Technol. Lett. 15, 90-92 (2003).
  24. J. P. Turkiewicz, G. D. Khoe, H. de Waadt, "All-optical 1310 to 1550 nm wavelength conversion by utilizing nonlinear polarization rotation in semiconductor optical amplifier," Electron. Lett. 41, 29-30 (2005).
  25. G. Contestabile, N. Calabretta, M. Presi, E. Ciaramella, "Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA," IEEE Photon. Technol. Lett. 17, 2625-2627 (2005).
  26. N. S. Bergano, F. W. Kerfoot, C. R. Davidson, "Margin measurements in optical amplifier systems," IEEE Photon. Technol. Lett. 5, 304-306 (1993).

2006 (2)

C. H. Kwok, C. W. Chow, H. K. Tsang, C. Lin, "Nonlinear polarization rotation in a dispersion-flattened photonic-crystal fiber for ultrawideband (> 100 nm) all-optical wavelength conversion of 10 Gb/s nonreturn-to-zero signals," Opt. Lett. 31, 1782-1784 (2006).

M. Matsuura, N. Kishi, T. Miki, "All-optical wavelength conversion with large wavelength hopping by utilizing multistage cascaded SOA-based wavelength converters," IEEE Photon. Technol. Lett. 18, 926-928 (2006).

2005 (5)

H. Takara, T. Ohara, T. Yamamoto, H. Masuda, M. Abe, H. Takahashi, T. Morioka, "Field demonstration of over 1000-channel DWDM transmission with supercontinuum multi-carrier source," Electron. Lett. 41, 270-271 (2005).

A. Zhang, M. S. Demonkan, "Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber," Opt. Lett. 30, 2375-2377 (2005).

C. H. Kwok, S. H. Lee, K. K. Chow, C. Shu, C. Lin, A. Bjarklev, "Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM ," IEEE Photon. Technol. Lett. 17, 2655-2657 (2005).

J. P. Turkiewicz, G. D. Khoe, H. de Waadt, "All-optical 1310 to 1550 nm wavelength conversion by utilizing nonlinear polarization rotation in semiconductor optical amplifier," Electron. Lett. 41, 29-30 (2005).

G. Contestabile, N. Calabretta, M. Presi, E. Ciaramella, "Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA," IEEE Photon. Technol. Lett. 17, 2625-2627 (2005).

2003 (2)

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, H. J. S. Dorren, "Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier," IEEE Photon. Technol. Lett. 15, 90-92 (2003).

A. Bilenca, R. Alizon, V. Mikhelashhvili, D. Dahan, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, A. Forchel, "Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-InP quantumdash semiconductor optical amplifiers operating at 1550 nm," IEEE Photon. Technol. Lett. 15, 563-565 (2003).

2002 (1)

S. Watanabe, F. Futami, "All-optical wavelength conversion using ultra-fast nonlinearities in optical fiber," IEICE Trans. Electron. E85-C, 889-895 (2002).

2000 (2)

H. Kawata, H. Nakamura, T. Sugie, "Service multiplexing systems with widepassband WDM technology for access networks," IEICE Trans. Commun. E83-B, 2348-2354 (2000).

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, S. Namiki, "Efficient FWM based broadband wavelength conversion using a short high-nonlinearity fiber ," IEICE Trans. Electron. E83-C, 816-823 (2000).

1999 (2)

T. J. Morgan, R. S. Tucker, J. P. R. Lacey, "All-optical wavelength translation over 80 nm at 2.5 Gb/s using four-wave mixing in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 11, 982-984 (1999).

H. Soto, D. Erasme, G. Guekos, "Cross-polarization modulation in semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 11, 970-972 (1999).

1998 (2)

M. F. C. Stephens, M. Asghari, R. V. Penty, I. H. White, "Demonstration of ultrafast all-optical wavelength conversion utilizing birefringence in semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 10, 346-348 (1998).

B. Ramamurthy, B. Mukherjee, "Wavelength conversion in WDM networking," IEEE J. Sel. Areas Commun. 16, 1061-1073 (1998).

1996 (3)

S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightw. Technol. 14, 955-966 (1996).

J. P. R. Lacey, G. J. Pendock, R. S. Tucker, "All-optical 1300-nm to 1550-nm wavelength conversion using cross-phase modulation in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 8, 885-887 (1996).

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightw. Technol. 14, 942-954 (1996).

1995 (1)

D. Mahgerefteh, M. W. Chbat, "All-optical 1.5 μm to 1.3 $\mu \hbox{m}$ wavelength conversion in a walk-off compensating nonlinear optical loop mirror ," IEEE Photon. Technol. Lett. 7, 497-499 (1995).

1993 (1)

N. S. Bergano, F. W. Kerfoot, C. R. Davidson, "Margin measurements in optical amplifier systems," IEEE Photon. Technol. Lett. 5, 304-306 (1993).

1991 (1)

P. E. Barnsley, P. J. Fiddyment, "Wavelength conversion from 1.3 to 1.55 μm using split contact optical amplifiers," IEEE Photon. Technol. Lett. 3, 256-258 (1991).

Electron. Lett. (2)

H. Takara, T. Ohara, T. Yamamoto, H. Masuda, M. Abe, H. Takahashi, T. Morioka, "Field demonstration of over 1000-channel DWDM transmission with supercontinuum multi-carrier source," Electron. Lett. 41, 270-271 (2005).

J. P. Turkiewicz, G. D. Khoe, H. de Waadt, "All-optical 1310 to 1550 nm wavelength conversion by utilizing nonlinear polarization rotation in semiconductor optical amplifier," Electron. Lett. 41, 29-30 (2005).

IEEE J. Sel. Areas Commun. (1)

B. Ramamurthy, B. Mukherjee, "Wavelength conversion in WDM networking," IEEE J. Sel. Areas Commun. 16, 1061-1073 (1998).

IEEE Photon. Technol. Lett. (12)

D. Mahgerefteh, M. W. Chbat, "All-optical 1.5 μm to 1.3 $\mu \hbox{m}$ wavelength conversion in a walk-off compensating nonlinear optical loop mirror ," IEEE Photon. Technol. Lett. 7, 497-499 (1995).

C. H. Kwok, S. H. Lee, K. K. Chow, C. Shu, C. Lin, A. Bjarklev, "Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM ," IEEE Photon. Technol. Lett. 17, 2655-2657 (2005).

P. E. Barnsley, P. J. Fiddyment, "Wavelength conversion from 1.3 to 1.55 μm using split contact optical amplifiers," IEEE Photon. Technol. Lett. 3, 256-258 (1991).

T. J. Morgan, R. S. Tucker, J. P. R. Lacey, "All-optical wavelength translation over 80 nm at 2.5 Gb/s using four-wave mixing in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 11, 982-984 (1999).

A. Bilenca, R. Alizon, V. Mikhelashhvili, D. Dahan, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, A. Forchel, "Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-InP quantumdash semiconductor optical amplifiers operating at 1550 nm," IEEE Photon. Technol. Lett. 15, 563-565 (2003).

J. P. R. Lacey, G. J. Pendock, R. S. Tucker, "All-optical 1300-nm to 1550-nm wavelength conversion using cross-phase modulation in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 8, 885-887 (1996).

M. Matsuura, N. Kishi, T. Miki, "All-optical wavelength conversion with large wavelength hopping by utilizing multistage cascaded SOA-based wavelength converters," IEEE Photon. Technol. Lett. 18, 926-928 (2006).

G. Contestabile, N. Calabretta, M. Presi, E. Ciaramella, "Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA," IEEE Photon. Technol. Lett. 17, 2625-2627 (2005).

N. S. Bergano, F. W. Kerfoot, C. R. Davidson, "Margin measurements in optical amplifier systems," IEEE Photon. Technol. Lett. 5, 304-306 (1993).

M. F. C. Stephens, M. Asghari, R. V. Penty, I. H. White, "Demonstration of ultrafast all-optical wavelength conversion utilizing birefringence in semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 10, 346-348 (1998).

H. Soto, D. Erasme, G. Guekos, "Cross-polarization modulation in semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 11, 970-972 (1999).

Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe, H. J. S. Dorren, "Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier," IEEE Photon. Technol. Lett. 15, 90-92 (2003).

IEICE Trans. Commun. (1)

H. Kawata, H. Nakamura, T. Sugie, "Service multiplexing systems with widepassband WDM technology for access networks," IEICE Trans. Commun. E83-B, 2348-2354 (2000).

IEICE Trans. Electron. (2)

S. Watanabe, F. Futami, "All-optical wavelength conversion using ultra-fast nonlinearities in optical fiber," IEICE Trans. Electron. E85-C, 889-895 (2002).

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, S. Namiki, "Efficient FWM based broadband wavelength conversion using a short high-nonlinearity fiber ," IEICE Trans. Electron. E83-C, 816-823 (2000).

J. Lightw. Technol. (2)

S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightw. Technol. 14, 955-966 (1996).

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightw. Technol. 14, 942-954 (1996).

Opt. Lett. (2)

Other (4)

M. Hirano, T. Nakanishi, T. Okuno, M. Onishi, "Broadband wavelength conversion over 193-nm by HNL-DSF improving higher-order dispersion performance," Proc. ECOC (2005) pp. 43-44.

R. Ramaswami, K. N. Sivarajan, Optical Networks: A Practical Perspective (Morgan Kaufmann, 1998).

M. Matsuura, N. Kishi, T. Miki, "Ultra-wideband wavelength conversion over 300 nm by cascaded SOA-based wavelength converters ," Proc. OFC/NFOEC (2006) pp. 1-3.

M. Matsuura, N. Kishi, T. Miki, "Proposal for broadband wavelength conversion by utilizing multi-stage cascaded SOA-based wavelength converters," Proc. OECC (2005) pp. 634-635.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.