Abstract

We present the first 40-Gb/s widely tunable electroabsorption modulator (EAM)-based transmitters. The sampled-grating Distributed Bragg Reflector (SG-DBR) laser/EAM devices were fabricated using a multiple-band-edge-quantum-well-intermixing (QWI) technique, which requires only simple blanket regrowth and avoids disruption of the axial waveguide. Devices were fabricated from two different multiple quantum well (MQW) active-region designs for direct comparison. The SG-DBR lasers demonstrated 30 nm of tuning with output powers up to 35 mW. The integrated QW EAMs provided 3-dB optical modulation bandwidths in the 35–39 GHz range, low-drive voltage (1.0–1.5 V<sub>PtoP</sub>), and low/negative-chirp operation. Bit-error-rate measurements at 40 Gb/s demonstrated 0.2–1.1 dB of power penalty for transmission through 2.3 km of standard fiber.

© 2007 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription