Abstract

We report the demonstration of the first air-core photonic-bandgap fiber gyroscope. Because the optical mode in the sensing coil travels largely through air, which has much smaller Kerr, Faraday, and thermal constants than silica, far lower dependencies on power, magnetic field, and temperature fluctuations are predicted. With a 235-m fiber coil, we observe a minimum detectable rotation rate of ~2.7°/h and a long-term stability of ~2°/h, which are consistent with the Rayleigh backscattering coefficient of the fiber and comparable to that measured with a conventional fiber.

© 2006 IEEE

PDF Article

References

  • View by:
  • |

  1. H. Lefèvre, Fiber Optic Gyroscope, Boston, MA: Artech House, 1993, ch. 2 and 3.
  2. W. Burns, Optical Fiber Rotation Sensing, Boston, MA: Academic, 1994, ch. 3.
  3. C. C. Cutler, S. A. Newton and H. J. Shaw, "Limitation of rotation sensing by scattering", Opt. Lett., vol. 5, no. 11, pp. 488-490, Nov. 1980.
  4. D. M. Shupe, "Fiber resonator gyroscope: sensitivity and thermal nonreciprocity", Appl. Opt., vol. 20, no. 2, pp. 286-289, Jan. 1981.
  5. C. M. Smith, et al. "Low-loss hollow-core silica/air photonic bandgap fibre", Nature, vol. 424, no. 6949, pp. 657-659, Aug. 2003.
  6. B. J. Manan, et al. "Low loss (1.7 dB/km) hollow core photonic bandgap fiber", presented at the Optical Fiber Communication Conf. (OFC), Los Angeles, CA, Postdeadline paper PDP24, Feb. 2004.
  7. M. J. F. Digonnet, "Status of broadband rare earth doped fiber sources for FOG applications", in Proc. SPIE Fiber Optic and Laser Sensors XI, vol. 2070, Washington, DC, 1993, pp. 113-131.
  8. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade and A. Mysyrowicz, "Determination of the inertial contribution to the nonlinear refractive index of air, N2 and O2 by use of unfocused high-intensity femtosecond laser pulses", J. Opt. Soc. Amer. B, Opt. Phys., vol. 14, no. 3, pp. 650-660, Mar. 1997.
  9. K. S. Kim, R. H. Stolen, W. A. Reed and K. W. Quoi, "Measurement of the nonlinear index of silica-core and dispersion-shifted fiber", Opt. Lett., vol. 19, no. 4, pp. 257-259, Feb. 1994.
  10. D. G. Ouzounov, et al. "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers", Science, vol. 301, no. 5640, pp. 1702-1704, Sep. 2003.
  11. D. E. Gray, American Institute of Physics Handbook, New York: McGraw-Hill, 1963,vol. 6, p. 183.
  12. H. K. Kim, V. Dangui, M. Digonnet and G. Kino, "Fiber-optic gyroscope using an air-core photonic-bandgap fiber", in Proc. Opt. Fibre Sensors Conf., vol. 5855, Bruges, Belgium, May 2005, pp. 198-201.
  13. P. J. Roberts, et al. "Ultimate low loss of hollow-core photonic crystal fibres", Opt. Express, vol. 13, no. 1, pp. 236-244, Jan. 2005.
  14. M. Wegmuller, M. Legré, N. Gisin, T. P. Hansen, C. Jakobsen and J. Broen, "Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm", Opt. Express, vol. 13, no. 5, pp. 1457-1467, Mar. 2005.

  15. N. J. Frigo, "Compensation of linear sources of non-reciprocity in Sagnac interferometers", in Proc. SPIE Fiber Optic and Laser Sensors XI, vol. 412, Washington, DC, 1983, pp. 268-271.
  16. V. Dangui, H. K. Kim, M. J. F. Digonnet and G. S. Kino, "Phase sensitivity to temperature of the fundamental mode in air-guiding photonic-bandgap fibers", Opt. Express, vol. 13, no. 18, pp. 6669-6684, Sep. 2005.
  17. W. Burns, Optical Fiber Rotation Sensing, Boston, MA: Academic, 1994, ch. 1.
  18. H. Lefèvre, Fiber Optic Gyroscope, Boston, MA: Artech House, 1993, pp. 66-67.

Other (19)

H. Lefèvre, Fiber Optic Gyroscope, Boston, MA: Artech House, 1993, ch. 2 and 3.

W. Burns, Optical Fiber Rotation Sensing, Boston, MA: Academic, 1994, ch. 3.

C. C. Cutler, S. A. Newton and H. J. Shaw, "Limitation of rotation sensing by scattering", Opt. Lett., vol. 5, no. 11, pp. 488-490, Nov. 1980.

D. M. Shupe, "Fiber resonator gyroscope: sensitivity and thermal nonreciprocity", Appl. Opt., vol. 20, no. 2, pp. 286-289, Jan. 1981.

C. M. Smith, et al. "Low-loss hollow-core silica/air photonic bandgap fibre", Nature, vol. 424, no. 6949, pp. 657-659, Aug. 2003.

B. J. Manan, et al. "Low loss (1.7 dB/km) hollow core photonic bandgap fiber", presented at the Optical Fiber Communication Conf. (OFC), Los Angeles, CA, Postdeadline paper PDP24, Feb. 2004.

M. J. F. Digonnet, "Status of broadband rare earth doped fiber sources for FOG applications", in Proc. SPIE Fiber Optic and Laser Sensors XI, vol. 2070, Washington, DC, 1993, pp. 113-131.

E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade and A. Mysyrowicz, "Determination of the inertial contribution to the nonlinear refractive index of air, N2 and O2 by use of unfocused high-intensity femtosecond laser pulses", J. Opt. Soc. Amer. B, Opt. Phys., vol. 14, no. 3, pp. 650-660, Mar. 1997.

K. S. Kim, R. H. Stolen, W. A. Reed and K. W. Quoi, "Measurement of the nonlinear index of silica-core and dispersion-shifted fiber", Opt. Lett., vol. 19, no. 4, pp. 257-259, Feb. 1994.

D. G. Ouzounov, et al. "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers", Science, vol. 301, no. 5640, pp. 1702-1704, Sep. 2003.

D. E. Gray, American Institute of Physics Handbook, New York: McGraw-Hill, 1963,vol. 6, p. 183.

H. K. Kim, V. Dangui, M. Digonnet and G. Kino, "Fiber-optic gyroscope using an air-core photonic-bandgap fiber", in Proc. Opt. Fibre Sensors Conf., vol. 5855, Bruges, Belgium, May 2005, pp. 198-201.

P. J. Roberts, et al. "Ultimate low loss of hollow-core photonic crystal fibres", Opt. Express, vol. 13, no. 1, pp. 236-244, Jan. 2005.

M. Wegmuller, M. Legré, N. Gisin, T. P. Hansen, C. Jakobsen and J. Broen, "Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm", Opt. Express, vol. 13, no. 5, pp. 1457-1467, Mar. 2005.


N. J. Frigo, "Compensation of linear sources of non-reciprocity in Sagnac interferometers", in Proc. SPIE Fiber Optic and Laser Sensors XI, vol. 412, Washington, DC, 1983, pp. 268-271.

V. Dangui, H. K. Kim, M. J. F. Digonnet and G. S. Kino, "Phase sensitivity to temperature of the fundamental mode in air-guiding photonic-bandgap fibers", Opt. Express, vol. 13, no. 18, pp. 6669-6684, Sep. 2005.

W. Burns, Optical Fiber Rotation Sensing, Boston, MA: Academic, 1994, ch. 1.

H. Lefèvre, Fiber Optic Gyroscope, Boston, MA: Artech House, 1993, pp. 66-67.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.