Abstract

A time-division add-drop multiplexer capable of high-extinction-ratio operation is presented both theoretically and experimentally. The approach used is based on time-to-frequency domain conversion of optical signals and relies upon the switching of linearly chirped optical pulses. By converting a 40-Gb/s optical time-division multiplexing (OTDM) signal to 4 × 10-Gb/s wavelength-division multiplexing (WDM) channels and using fiber Bragg gratings for frequency-domain add-drop multiplexing, a timeslot suppression ratio in excess of 30 dB and error-free operation for the dropped, through, and added channels were achieved. A further stage of WDM-to-TDM signal conversion was used to map the resulting signal back into the time domain. Moreover, it is shown that it is straightforward to simultaneously operate on multiple channels by simply cascading gratings to make more complex filtering functions without the requirement for any further synchronization of the tributary channels.

© 2006 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription