Abstract

An ultrafast optical distortion equalizer using time-frequency domain processing that allowed bitwise adaptive compensation of ad hoc optical distortions is described. In the time-frequency domain, because all distortions are distilled to variations in the arrival times of each multiplexed spectral component, they can be treated as one time-frequency distribution. Spatial channels are used to separate spectral components in a distorted bit pulse into plural channels for time-frequency demultiplexing (TF-DEMUX). After TF-DEMUX, temporal and spectral adjustments are achieved through a hard-wired optical delay line for each spatial channel so that each fixed time difference can be canceled. The operation of the proposed ultrafast optical distortion equalizer for uncharacterized optical distortion of chromatic dispersion and timing jitter ranging from several picoseconds to subpicoseconds was demonstrated.

© 2006 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription