Abstract

A new technique to reduce the dominant phase-induced intensity noise (PIIN) in active high-Q recursive photonic signal processors is presented. This is based on using cross-gain-modulation effects in a semiconductor optical amplifier in the recursive loop of the processor. Two different laser sources are used, and no recombination of the optical power from the same laser source occurs in the optical domain, hence, PIIN generation is suppressed. The processor structure also features the advantage that it does not require an incoherent light source. Hence, the free spectral range of the processor is not limited by the coherence of the laser source, as in existing incoherent approaches. Experimental results for the new processor demonstrate a more-than-30-dB reduction in PIIN level for a high-Q bandpass filter, compared to the conventional approach for the same filtering parameters.

© 2006 IEEE

PDF Article

References

  • View by:
  • |

  1. B. Moslehi, "Fiber-optic filters employing optical amplifier to provide design flexibility", Electron. Lett., vol. 28, no. 3, pp. 226-228, Jan. 1992.
  2. D. B. Hunter and R. A. Minasian, "Photonic signal processing of microwave signals using active-fiber Bragg-grating-pair structure", IEEE Trans. Microw. Theory Tech., vol. 45, no. 8, pp. 1463-1466, Aug. 1997.
  3. N. You and R. Minasian, "A novel high-Q optical microwave processor using hybrid delay-line filters", IEEE Trans. Microw. Theory Tech., vol. 47, no. 7, pp. 1304-1308, Jul. 1999.
  4. M. Tur, B. Moslehi and J. Goodman, "Theory of laser phase noise in recirculating fiber-optic delay lines", J. Lightw. Technol., vol. LT-3, no. 1, pp. 20-31, Feb. 1985.
  5. B. Moslehi, "Analysis of optical phase noise in fiber-optic systems employing a laser source with arbitrary coherence time", J. Lightw. Technol., vol. LT-4, no. 9, pp. 1334-1351, Sep. 1986.
  6. J. Capmany, "Investigation on phase induced intensity noise in amplified fibre-optic recirculating delay line", Electron. Lett., vol. 29, no. 4, pp. 346-347, Feb. 1993.
  7. J. T. Kringlebotn and K. Blotekjaer, "Noise analysis of an amplified fiber-optic recirculating delay line", J. Lightw. Technol., vol. 12, no. 3, pp. 573-581, Mar. 1994.
  8. A. Arie and M. Tur, "The effects of polarization control on the transfer function and the phase induced intensity noise of a fiber-optic recirculating delay line", J. Lightw. Technol., vol. 6, no. 10, pp. 1566-1574, Oct. 1988.
  9. T. Durhuus, B. Mikkelesen, C. G. Joergensen and K. E. Stubkjaer, "All optical wavelength conversion by semiconductor optical amplifiers", J. Lightw. Technol., vol. 14, no. 6, pp. 942-954, Jun. 1996.
  10. D. D. Marcenac, A. E. Kelly, D. Nesset and D. A. O. Davies, "Bandwidth enhancement of wavelength conversion via cross-gain modulation by optical amplifier cascade", Electron. Lett., vol. 31, no. 17, pp. 1442-1443, Aug. 1995.
  11. P. Doussiere, P. Garabedian, C. G. Graver, B. Bonnevie, T. Fillion, E. Derouin, M. Monnot, J. G. Provost, D. Leclerc and M. Klenk, "1.55 µm polarization independent semiconductor optical amplifier 25 dB fiber to fiber gain", IEEE Photon. Technol. Lett., vol. 6, no. 2, pp. 170-172, Feb. 1994.
  12. A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie and R. Kashyap, "Error free 100 Gb/s wavelength conversion using grating assisted cross gain modulation in a 2 mm long semiconductor amplifier", Electron. Lett., vol. 34, no. 20, pp. 1958-1959, Oct. 1998.
  13. T. Durbuus, et al. "All-optical wavelength conversion by semiconductor optical amplifiers", J. Lightw. Technol., vol. 14, no. 6, pp. 942-954, Jun. 1996.
  14. J. Capmany, et al. "Formula for two-carrier intermodulation distortion in wavelength converted subcarrier multiplexed signals via cross gain modulation", IEEE Photon. Technol. Lett., vol. 12, no. 3, pp. 278-280, Mar. 2000.

Other (14)

B. Moslehi, "Fiber-optic filters employing optical amplifier to provide design flexibility", Electron. Lett., vol. 28, no. 3, pp. 226-228, Jan. 1992.

D. B. Hunter and R. A. Minasian, "Photonic signal processing of microwave signals using active-fiber Bragg-grating-pair structure", IEEE Trans. Microw. Theory Tech., vol. 45, no. 8, pp. 1463-1466, Aug. 1997.

N. You and R. Minasian, "A novel high-Q optical microwave processor using hybrid delay-line filters", IEEE Trans. Microw. Theory Tech., vol. 47, no. 7, pp. 1304-1308, Jul. 1999.

M. Tur, B. Moslehi and J. Goodman, "Theory of laser phase noise in recirculating fiber-optic delay lines", J. Lightw. Technol., vol. LT-3, no. 1, pp. 20-31, Feb. 1985.

B. Moslehi, "Analysis of optical phase noise in fiber-optic systems employing a laser source with arbitrary coherence time", J. Lightw. Technol., vol. LT-4, no. 9, pp. 1334-1351, Sep. 1986.

J. Capmany, "Investigation on phase induced intensity noise in amplified fibre-optic recirculating delay line", Electron. Lett., vol. 29, no. 4, pp. 346-347, Feb. 1993.

J. T. Kringlebotn and K. Blotekjaer, "Noise analysis of an amplified fiber-optic recirculating delay line", J. Lightw. Technol., vol. 12, no. 3, pp. 573-581, Mar. 1994.

A. Arie and M. Tur, "The effects of polarization control on the transfer function and the phase induced intensity noise of a fiber-optic recirculating delay line", J. Lightw. Technol., vol. 6, no. 10, pp. 1566-1574, Oct. 1988.

T. Durhuus, B. Mikkelesen, C. G. Joergensen and K. E. Stubkjaer, "All optical wavelength conversion by semiconductor optical amplifiers", J. Lightw. Technol., vol. 14, no. 6, pp. 942-954, Jun. 1996.

D. D. Marcenac, A. E. Kelly, D. Nesset and D. A. O. Davies, "Bandwidth enhancement of wavelength conversion via cross-gain modulation by optical amplifier cascade", Electron. Lett., vol. 31, no. 17, pp. 1442-1443, Aug. 1995.

P. Doussiere, P. Garabedian, C. G. Graver, B. Bonnevie, T. Fillion, E. Derouin, M. Monnot, J. G. Provost, D. Leclerc and M. Klenk, "1.55 µm polarization independent semiconductor optical amplifier 25 dB fiber to fiber gain", IEEE Photon. Technol. Lett., vol. 6, no. 2, pp. 170-172, Feb. 1994.

A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie and R. Kashyap, "Error free 100 Gb/s wavelength conversion using grating assisted cross gain modulation in a 2 mm long semiconductor amplifier", Electron. Lett., vol. 34, no. 20, pp. 1958-1959, Oct. 1998.

T. Durbuus, et al. "All-optical wavelength conversion by semiconductor optical amplifiers", J. Lightw. Technol., vol. 14, no. 6, pp. 942-954, Jun. 1996.

J. Capmany, et al. "Formula for two-carrier intermodulation distortion in wavelength converted subcarrier multiplexed signals via cross gain modulation", IEEE Photon. Technol. Lett., vol. 12, no. 3, pp. 278-280, Mar. 2000.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.