Abstract

This paper presents a novel coherent optical signal processing approach for synthesis of programmable microwave amplitude filters over an ultrawideband. The authors' scheme relies on a programmable hyperfine optical filter implemented in a pulse-shaping geometry, which provides arbitrary, user-defined amplitude-filtering functions over a 50-GHz bandwidth with resolution better than 0.7 GHz. In contrast to previous work on discrete time optical processing of microwave signals, their approach allows direct synthesis of microwave filter functions in spectral domain without computing filter coefficients, which is needed for a discrete-time-domain approach.

© 2006 IEEE

PDF Article

References

  • View by:
  • |

  1. J. Capmany, B. Ortega, D. Pastor and S. Sales, "Discrete-time optical processing of microwave signals", J. Lightw. Technol., vol. 23, no. 2, pp. 702-723, Feb. 2005.
  2. C. Chang, J. A. Cassaboom and H. F. Taylor, "Fiber optical delay line devices for RF signal processing", Electron. Lett., vol. 13, no. 22, pp. 678-680, Oct. 1977.
  3. K. Jackson, S. Newton, B. Moslehi, M. Tur, C. Cutler, J. Goodman and H. J. Shaw, "Optical fiber delay-line signal processing", IEEE Trans. Microw. Theory Tech., vol. MTT-33, no. 3, pp. 193-204, Mar. 1985.
  4. D. Davies and G. W. James, "Fiber and integrated optical devices for signal processing", Electron. Lett., vol. 20, no. 2, pp. 95-97, 1984.
  5. R. A. Minasian, K. E. Alameh and E. H. W. Chan, "Photonics-based interference mitigation filters", IEEE Trans. Microw. Theory Tech., vol. 49, no. 10, pp. 1894-1899, Oct. 2001.
  6. D. Pastor, B. Ortega, P. Y. Fonjallaz and M. Popov, "Tunable microwave photonic filter for noise and interference suppression in UMTS base stations", Electron. Lett., vol. 40, no. 16, pp. 997-999, Aug. <day>5</day>, 2004.
  7. G. A. Ball, W. H. Glenn and W. W. Morey, "Programmable fiber-optic delay line", IEEE Photon. Technol. Lett., vol. 6, no. 6, pp. 741-743, Jun. 1994.
  8. D. B. Hunter and R. A. Minasian, "Photonic signal processing of microwave signals using active-fiber Bragg-grating-pair structure", IEEE Trans. Microw. Theory Tech., vol. 45, no. 8, pp. 1463-1466, Aug. 1997.
  9. J. Mora, B. Ortega, M. V. Andrés, J. Capmany, J. L. Cruz, D. Pastor and S. Sales, "Tunable all-optical negative multi-tap microwave filters based on uniform fiber Bragg gratings", Opt. Lett., vol. 428, no. 15, pp. 1308-1310, Aug. 2003.
  10. J. Capmany, D. Pastor, A. Martinez, B. Ortega and S. Sales, "Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator", Opt. Lett., vol. 28, no. 16, pp. 1415-1417, Aug. 2003.
  11. D. B. Hunter, "Incoherent bipolar tap microwave photonic filter based on a balanced bridge electro-optic modulator", Electron. Lett., vol. 40, no. 14, pp. 856-857, Jul. 2004.
  12. D. Pastor, J. Capmany and B. Ortega, "Reconfigurable RF-photonic filter with negative coefficients and flat top resonances using phase inversion in a newly designed 2 × 1 integrated Mach-Zehnder modulator", IEEE Photon. Technol. Lett., vol. 16, no. 9, pp. 2126-2128, Sep. 2004.
  13. S. Mansoori, A. Mitchell and K. Ghorbani, "Photonic reconfigurable microwave filter with negative coefficients", Electron. Lett., vol. 40, no. 9, pp. 541-542, Apr. 2004.
  14. J. Capmany, B. Ortega, D. Pastor and S. Sales, "Microwave photonic filters using low-cost sources featuring tunability, reconfigurability and negative coefficients", Opt. Express, vol. 13, no. 5, pp. 1412-1417, Mar. 2005.
  15. M. Popov, P. Fonjallaz and O. Gunnarsson, "Compact microwave photonic transversal filter with 40-dB sidelobe suppression", IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 663-665, Mar. 2005.
  16. J. H. Reed, Eds. An Introduction to Ultra Wideband Communication Systems, Upper Saddle River, NJ: Prentice-Hall, 2005.
  17. K. Sasayama, M. Okuno and K. Habara, "Coherent optical transversal filter using silica-based waveguides for high speed signal processing", J. Lightw. Technol., vol. 9, no. 10, pp. 1225-1230, Sep. 1991.
  18. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators", Rev. Sci. Instrum., vol. 71, no. 5, pp. 1929-1960, 2000.
  19. M. Shirasaki, "Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer", Opt. Lett., vol. 21, no. 5, pp. 366-368, 1996.
  20. S. Xiao and A. M. Weiner, "An eight-channel hyperfine wavelength demultiplexer using a Virtually-Imaged Phased-Array (VIPA)", IEEE Photon. Technol. Lett., vol. 17, no. 2, pp. 372-374, Feb. 2005.
  21. S. Xiao and A. M. Weiner, "Optical Carrier Suppressed Single Sideband (O-CS-SSB) modulation using a hyperfine blocking filter based on a Virtually-Imaged Phased-Array (VIPA)", IEEE Photon. Technol. Lett., vol. 17, no. 7, pp. 1522-1524, Jul. 2005.
  22. S. Xiao and A. M. Weiner, "4-user, \sim 3GHz-spaced Sub-Carrier Multiplexing (SCM) using optical direct-detection via hyperfine WDM", IEEE Photon. Technol. Lett., vol. 17, no. 10, pp. 2218-2220, Oct. 2005.
  23. S. Etemad, P. Toliver, R. Menendez, J. Young, T. Banwell, S. Galli, J. Jackel, P. Delfyett, C. Price and T. Turpin, "Spectrally efficient optical CDMA using coherent phase-frequency coding", IEEE Photon. Technol. Lett., vol. 17, no. 4, pp. 929-931, Apr. 2005.
  24. G. Lee and A. M. Weiner, "Programmable optical pulse burst manipulation using a Virtually Imaged Phased Array (VIPA) based Fourier transform pulse shaper", J. Lightw. Technol., vol. 23, no. 11, pp. 3916-3923, Nov. 2005.
  25. S. Xiao, A. M. Weiner and C. Lin, "A dispersion law for virtually-imaged phased array based on paraxial wave theory", IEEE J. Quantum Electron., vol. 40, no. 4, pp. 420-426, Apr. 2004.

Other (25)

J. Capmany, B. Ortega, D. Pastor and S. Sales, "Discrete-time optical processing of microwave signals", J. Lightw. Technol., vol. 23, no. 2, pp. 702-723, Feb. 2005.

C. Chang, J. A. Cassaboom and H. F. Taylor, "Fiber optical delay line devices for RF signal processing", Electron. Lett., vol. 13, no. 22, pp. 678-680, Oct. 1977.

K. Jackson, S. Newton, B. Moslehi, M. Tur, C. Cutler, J. Goodman and H. J. Shaw, "Optical fiber delay-line signal processing", IEEE Trans. Microw. Theory Tech., vol. MTT-33, no. 3, pp. 193-204, Mar. 1985.

D. Davies and G. W. James, "Fiber and integrated optical devices for signal processing", Electron. Lett., vol. 20, no. 2, pp. 95-97, 1984.

R. A. Minasian, K. E. Alameh and E. H. W. Chan, "Photonics-based interference mitigation filters", IEEE Trans. Microw. Theory Tech., vol. 49, no. 10, pp. 1894-1899, Oct. 2001.

D. Pastor, B. Ortega, P. Y. Fonjallaz and M. Popov, "Tunable microwave photonic filter for noise and interference suppression in UMTS base stations", Electron. Lett., vol. 40, no. 16, pp. 997-999, Aug. <day>5</day>, 2004.

G. A. Ball, W. H. Glenn and W. W. Morey, "Programmable fiber-optic delay line", IEEE Photon. Technol. Lett., vol. 6, no. 6, pp. 741-743, Jun. 1994.

D. B. Hunter and R. A. Minasian, "Photonic signal processing of microwave signals using active-fiber Bragg-grating-pair structure", IEEE Trans. Microw. Theory Tech., vol. 45, no. 8, pp. 1463-1466, Aug. 1997.

J. Mora, B. Ortega, M. V. Andrés, J. Capmany, J. L. Cruz, D. Pastor and S. Sales, "Tunable all-optical negative multi-tap microwave filters based on uniform fiber Bragg gratings", Opt. Lett., vol. 428, no. 15, pp. 1308-1310, Aug. 2003.

J. Capmany, D. Pastor, A. Martinez, B. Ortega and S. Sales, "Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator", Opt. Lett., vol. 28, no. 16, pp. 1415-1417, Aug. 2003.

D. B. Hunter, "Incoherent bipolar tap microwave photonic filter based on a balanced bridge electro-optic modulator", Electron. Lett., vol. 40, no. 14, pp. 856-857, Jul. 2004.

D. Pastor, J. Capmany and B. Ortega, "Reconfigurable RF-photonic filter with negative coefficients and flat top resonances using phase inversion in a newly designed 2 × 1 integrated Mach-Zehnder modulator", IEEE Photon. Technol. Lett., vol. 16, no. 9, pp. 2126-2128, Sep. 2004.

S. Mansoori, A. Mitchell and K. Ghorbani, "Photonic reconfigurable microwave filter with negative coefficients", Electron. Lett., vol. 40, no. 9, pp. 541-542, Apr. 2004.

J. Capmany, B. Ortega, D. Pastor and S. Sales, "Microwave photonic filters using low-cost sources featuring tunability, reconfigurability and negative coefficients", Opt. Express, vol. 13, no. 5, pp. 1412-1417, Mar. 2005.

M. Popov, P. Fonjallaz and O. Gunnarsson, "Compact microwave photonic transversal filter with 40-dB sidelobe suppression", IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 663-665, Mar. 2005.

J. H. Reed, Eds. An Introduction to Ultra Wideband Communication Systems, Upper Saddle River, NJ: Prentice-Hall, 2005.

K. Sasayama, M. Okuno and K. Habara, "Coherent optical transversal filter using silica-based waveguides for high speed signal processing", J. Lightw. Technol., vol. 9, no. 10, pp. 1225-1230, Sep. 1991.

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators", Rev. Sci. Instrum., vol. 71, no. 5, pp. 1929-1960, 2000.

M. Shirasaki, "Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer", Opt. Lett., vol. 21, no. 5, pp. 366-368, 1996.

S. Xiao and A. M. Weiner, "An eight-channel hyperfine wavelength demultiplexer using a Virtually-Imaged Phased-Array (VIPA)", IEEE Photon. Technol. Lett., vol. 17, no. 2, pp. 372-374, Feb. 2005.

S. Xiao and A. M. Weiner, "Optical Carrier Suppressed Single Sideband (O-CS-SSB) modulation using a hyperfine blocking filter based on a Virtually-Imaged Phased-Array (VIPA)", IEEE Photon. Technol. Lett., vol. 17, no. 7, pp. 1522-1524, Jul. 2005.

S. Xiao and A. M. Weiner, "4-user, \sim 3GHz-spaced Sub-Carrier Multiplexing (SCM) using optical direct-detection via hyperfine WDM", IEEE Photon. Technol. Lett., vol. 17, no. 10, pp. 2218-2220, Oct. 2005.

S. Etemad, P. Toliver, R. Menendez, J. Young, T. Banwell, S. Galli, J. Jackel, P. Delfyett, C. Price and T. Turpin, "Spectrally efficient optical CDMA using coherent phase-frequency coding", IEEE Photon. Technol. Lett., vol. 17, no. 4, pp. 929-931, Apr. 2005.

G. Lee and A. M. Weiner, "Programmable optical pulse burst manipulation using a Virtually Imaged Phased Array (VIPA) based Fourier transform pulse shaper", J. Lightw. Technol., vol. 23, no. 11, pp. 3916-3923, Nov. 2005.

S. Xiao, A. M. Weiner and C. Lin, "A dispersion law for virtually-imaged phased array based on paraxial wave theory", IEEE J. Quantum Electron., vol. 40, no. 4, pp. 420-426, Apr. 2004.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.