Abstract

In this paper, optical pulse compression using a comblike profiled fiber (CPF) is theoretically and experimentally studied, in which highly nonlinear fibers and single-mode fibers are alternately concatenated. Stationary rescaled pulse (SRP), is the main focus, which is a recently discovered nonlinear stationary pulse in CPF. The fundamental characteristics of SRP are investigated, and SRP propagation is applied to the design of the CPF pulse compressor. Using the proposed design method, the specifications of the CPF can easily be controlled, such as the compression ratio per step of the CPF or the pedestal of the output pulse. Two experimental results of pulse compression using the CPF based on the proposed design method are shown: 1) pulse compression with a large compression ratio per step of the CPF and 2) low-pedestal and wideband wavelength-tunable compression. A parametric noise-amplification phenomenon occurring in a compression process for an optical pulse sequence is also numerically analyzed.

© 2006 IEEE

PDF Article

References

  • View by:
  • |

  1. S. Watanabe, R. Ludwig, F. Futami, C. Schubert, S. Ferber, C. Boerner, C. Schmidt-Langhorst, J. Berger and H.-G. Weber, "Ultrafast all-optical 3R-regeneration", IEICE Trans. Electron., vol. E87-C, no. 7, pp. 1114-1118, Jul. 2004.
  2. S. Takasaka, Y. Ozeki, K. Igarashi and S. Namiki, "Optical phase-locking of 160 GHz optical beat to 40 GHz optical pulse train using a three-electrode DFB-LD and a Si avalanche photodiode", in Proc. ECOC, 2005, Paper Th1.3.6,. pp. 799-800.
  3. G. P. Agrawal, Applications of Nonlinear Fiber Optics, New York: Academic, 2001, ch. 6.
  4. M. Nakazawa, H. Kubota and K. Tamura, "Random evolution and coherence degradation of a high-order optical soliton train in the presence of noise", Opt. Lett., vol. 24, no. 5, pp. 318-320, Mar. 1999.
  5. P. V. Mamyshev, S. V. Chernikov and E. M. Dianov, "Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines", IEEE J. Quantum Electron., vol. 27, no. 10, pp. 2347-2355, Oct. 1991.
  6. P. C. Reeves-Hall, S. A. E. Lewis, S. V. Chernikov and J. R. Taylor, "Picosecond soliton pulse-duration-selectable source based on adiabatic compression in Raman amplifier", Electron. Lett., vol. 36, no. 7, pp. 622-624, Mar. 2000.
  7. E. Ciaramella, G. Contestabile, A. D'Errico, C. Loiacono and M. Presi, "High-power widely tunable 40-GHz pulse source for 160-Gb/s OTDM systems based on nonlinear fiber effects", IEEE Photon. Technol. Lett., vol. 16, no. 3, pp. 753-755, Mar. 2004.
  8. J. H. Lee, Y.-G. Han, S. B. Lee, T. Kogure and D. J. Richardson, "40 GHz adiabatic compression of a modulator based dual frequency beat signal using Raman amplification in dispersion decreasing fiber", Opt. Express, vol. 12, no. 10, pp. 2187-2192, May 2004.
  9. V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur'yanov, G. G. Devyatykh and S. I. Miroshnichenko, "A single-mode fiber with chromatic dispersion varying along the length", J. Lightw. Technol., vol. 9, no. 5, pp. 561-566, May 1991.
  10. S. V. Chernikov, E. M. Dianov, D. J. Richardson and D. N. Payne, "Soliton pulse compression in dispersion-decreasing fiber", Opt. Lett., vol. 18, no. 7, pp. 476-478, Apr. 1993.
  11. S. V. Chernikov, J. R. Taylor and R. Kashyap, "Experimental demonstration of step-like dispersion profiling in optical fibre for soliton pulse generation and compression", Electron. Lett., vol. 30, no. 5, pp. 433-435, Mar. 1994.
  12. S. V. Chernikov, J. R. Taylor and R. Kashyap, "Comblike dispersion-profiled fiber for soliton pulse train generation", Opt. Lett., vol. 19, no. 8, pp. 539-541, Apr. 1994.
  13. J. Hiroishi, N. Kumano, K. Mukasa, R. Sugizaki, R. Miyabe, S. Matsushita, H. Tobioka, S. Namiki and T. Yagi, "Dispersion slope controlled HNL-DSF with high gamma of 25 W-1km-1 and band conversion experiment using this fiber", in Proc. ECOC, 2002, Paper PD1.5,. pp. 9-10.
  14. M. Tadakuma, O. Aso and S. Namiki, "A 104 GHz 328 fs soliton pulse train generation through a comb-like dispersion profiled fiber using short high nonlinearity dispersion shifted fibers", in Proc. OFC, 2000, Paper ThL3,. pp. 178-180.
  15. M. Tadakuma, O. Aso, M. Sakano and S. Namiki, "100 GHz 380 fs pedestal suppressed pulse train generation by incorporating dispersion-imbalanced nonlinear optical loop mirror into short comb-like dispersion profiled fiber", in Proc. OECC, 2002, Paper 12D4-4,. pp. 646-647.
  16. K. Igarashi, H. Tobioka, S. Takasaka, S. Matsushita and S. Namiki, "Duration tunable 100 GHz sub-picosecond soliton train generation through adiabatic Raman amplification in conjunction with soliton reshaping", in Proc. OFC, 2003, Paper TuB6,. pp. 155-156.
  17. K. Igarashi, S. Takasaka, R. Miyabe, J. Hiroishi, R. Sugizaki, T. Yagi and S. Namiki, "Wideband-tunable highly pure 40 GHz picosecond soliton train generation by short comb-like profiled fiber", presented at the CLEO Conf., San Francisco, CA, Paper CFC2, 2004.
  18. K. Igarashi, M. Takahashi, J. Hiroishi, R. Sugizaki, S. Takasaka, T. Inoue, T. Yagi and S. Namiki, "Wideband tunable, low-noise 40 GHz RZ picosecond pulse train generation using short comb-like profiled fiber", presented at the ECOC, Stockholm, Sweden,Paper Tu3.3.1, 2004.
  19. K. Igarashi, J. Hiroishi, T. Yagi and S. Namiki, "Comb-like profiled fibre for efficient generation of high quality 160 GHz sub-picosecond soliton train", Electron. Lett., vol. 41, no. 12, pp. 688-690, Jun. 2005.
  20. K. Igarashi, H. Tobioka, M. Takahashi, T. Yagi and S. Namiki, "Widely wavelength-tunable 40 GHz femtosecond pulse source based on compression of externally-modulated pulse using 1.4 km comb-like profiled fibre", Electron. Lett., vol. 41, no. 14, pp. 797-798, Jul. 2005.
  21. T. Inoue, H. Tobioka and S. Namiki, "Stationary rescaled pulse in alternately concatenated fibers with O(1) -accumulated nonlinear perturbations", Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 72, no. 2, p. 025601(R), 2005.
  22. A. Maruta, T. Inoue, Y. Nonaka and Y. Yoshika, "Bisoliton propagating in dispersion-managed system and its application to high-speed and long-haul optical transmission", IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 3, pp. 640-650, May/Jun. 2002.
  23. A. Hasegawa and Y. Kodama, "Guiding-center soliton in optical fibers", Opt. Lett., vol. 15, no. 24, pp. 1443-1446, Dec. 1990.
  24. N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow and I. Bennion, "Enhanced power solitons in optical fibers with periodic dispersion management", Electron. Lett., vol. 32, no. 1, pp. 54-55, Jan. 1996.
  25. J. H. B. Nijhof, W. Forysiak and N. J. Doran, "The averaging method for finding exactly periodic dispersion-managed solitons", IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 2, pp. 330-336, Mar./Apr. 2000.
  26. V. Cautaerts, A. Maruta and Y. Kodama, "On the dispersion managed soliton", Chaos, vol. 10, no. 3, pp. 515-528, 2000.
  27. T. Inoue and S. Namiki, "Parametric noise amplification inherent in the coherence of fundamental optical soliton sequence propagating in fiber", IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 5, pp. 900-905, Sep./Oct. 2004.
  28. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. New York: Academic, 2001.
  29. Y. Ozeki, S. Takasaka, T. Inoue, K. Igarashi, J. Hiroishi, R. Sugizaki, M. Sakano and S. Namiki, "Nearly exact optical beat-to-soliton train conversion based on comb-like profiled fiber emulating a polynomial dispersion decreasing profile", IEEE Photon. Technol. Lett., vol. 17, no. 8, pp. 1698-1700, Aug. 2005.
  30. Y. Takushima and T. Okoshi, "Suppression of stimulated Brillouin scattering using optical isolators", Electron. Lett., vol. 28, no. 12, pp. 1155-1156, Jun. 1992.
  31. K. Inoue, "Arrangement of fiber pieces for a wide wavelength conversion range by fiber four-wave mixing", Opt. Lett., vol. 19, no. 16, pp. 1189-1191, Aug. 1994.
  32. M. E. Marhic, F. S. Yang, M.-C. Ho and L. G. Kazovsky, "High-nonlinearity fiber optical parametric amplifier with periodic dispersion compensation", J. Lightw. Technol., vol. 17, no. 2, pp. 210-215, Feb. 1999.

Other (32)

S. Watanabe, R. Ludwig, F. Futami, C. Schubert, S. Ferber, C. Boerner, C. Schmidt-Langhorst, J. Berger and H.-G. Weber, "Ultrafast all-optical 3R-regeneration", IEICE Trans. Electron., vol. E87-C, no. 7, pp. 1114-1118, Jul. 2004.

S. Takasaka, Y. Ozeki, K. Igarashi and S. Namiki, "Optical phase-locking of 160 GHz optical beat to 40 GHz optical pulse train using a three-electrode DFB-LD and a Si avalanche photodiode", in Proc. ECOC, 2005, Paper Th1.3.6,. pp. 799-800.

G. P. Agrawal, Applications of Nonlinear Fiber Optics, New York: Academic, 2001, ch. 6.

M. Nakazawa, H. Kubota and K. Tamura, "Random evolution and coherence degradation of a high-order optical soliton train in the presence of noise", Opt. Lett., vol. 24, no. 5, pp. 318-320, Mar. 1999.

P. V. Mamyshev, S. V. Chernikov and E. M. Dianov, "Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines", IEEE J. Quantum Electron., vol. 27, no. 10, pp. 2347-2355, Oct. 1991.

P. C. Reeves-Hall, S. A. E. Lewis, S. V. Chernikov and J. R. Taylor, "Picosecond soliton pulse-duration-selectable source based on adiabatic compression in Raman amplifier", Electron. Lett., vol. 36, no. 7, pp. 622-624, Mar. 2000.

E. Ciaramella, G. Contestabile, A. D'Errico, C. Loiacono and M. Presi, "High-power widely tunable 40-GHz pulse source for 160-Gb/s OTDM systems based on nonlinear fiber effects", IEEE Photon. Technol. Lett., vol. 16, no. 3, pp. 753-755, Mar. 2004.

J. H. Lee, Y.-G. Han, S. B. Lee, T. Kogure and D. J. Richardson, "40 GHz adiabatic compression of a modulator based dual frequency beat signal using Raman amplification in dispersion decreasing fiber", Opt. Express, vol. 12, no. 10, pp. 2187-2192, May 2004.

V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamyshev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov, A. A. Sysoliatin, S. V. Chernikov, A. N. Gur'yanov, G. G. Devyatykh and S. I. Miroshnichenko, "A single-mode fiber with chromatic dispersion varying along the length", J. Lightw. Technol., vol. 9, no. 5, pp. 561-566, May 1991.

S. V. Chernikov, E. M. Dianov, D. J. Richardson and D. N. Payne, "Soliton pulse compression in dispersion-decreasing fiber", Opt. Lett., vol. 18, no. 7, pp. 476-478, Apr. 1993.

S. V. Chernikov, J. R. Taylor and R. Kashyap, "Experimental demonstration of step-like dispersion profiling in optical fibre for soliton pulse generation and compression", Electron. Lett., vol. 30, no. 5, pp. 433-435, Mar. 1994.

S. V. Chernikov, J. R. Taylor and R. Kashyap, "Comblike dispersion-profiled fiber for soliton pulse train generation", Opt. Lett., vol. 19, no. 8, pp. 539-541, Apr. 1994.

J. Hiroishi, N. Kumano, K. Mukasa, R. Sugizaki, R. Miyabe, S. Matsushita, H. Tobioka, S. Namiki and T. Yagi, "Dispersion slope controlled HNL-DSF with high gamma of 25 W-1km-1 and band conversion experiment using this fiber", in Proc. ECOC, 2002, Paper PD1.5,. pp. 9-10.

M. Tadakuma, O. Aso and S. Namiki, "A 104 GHz 328 fs soliton pulse train generation through a comb-like dispersion profiled fiber using short high nonlinearity dispersion shifted fibers", in Proc. OFC, 2000, Paper ThL3,. pp. 178-180.

M. Tadakuma, O. Aso, M. Sakano and S. Namiki, "100 GHz 380 fs pedestal suppressed pulse train generation by incorporating dispersion-imbalanced nonlinear optical loop mirror into short comb-like dispersion profiled fiber", in Proc. OECC, 2002, Paper 12D4-4,. pp. 646-647.

K. Igarashi, H. Tobioka, S. Takasaka, S. Matsushita and S. Namiki, "Duration tunable 100 GHz sub-picosecond soliton train generation through adiabatic Raman amplification in conjunction with soliton reshaping", in Proc. OFC, 2003, Paper TuB6,. pp. 155-156.

K. Igarashi, S. Takasaka, R. Miyabe, J. Hiroishi, R. Sugizaki, T. Yagi and S. Namiki, "Wideband-tunable highly pure 40 GHz picosecond soliton train generation by short comb-like profiled fiber", presented at the CLEO Conf., San Francisco, CA, Paper CFC2, 2004.

K. Igarashi, M. Takahashi, J. Hiroishi, R. Sugizaki, S. Takasaka, T. Inoue, T. Yagi and S. Namiki, "Wideband tunable, low-noise 40 GHz RZ picosecond pulse train generation using short comb-like profiled fiber", presented at the ECOC, Stockholm, Sweden,Paper Tu3.3.1, 2004.

K. Igarashi, J. Hiroishi, T. Yagi and S. Namiki, "Comb-like profiled fibre for efficient generation of high quality 160 GHz sub-picosecond soliton train", Electron. Lett., vol. 41, no. 12, pp. 688-690, Jun. 2005.

K. Igarashi, H. Tobioka, M. Takahashi, T. Yagi and S. Namiki, "Widely wavelength-tunable 40 GHz femtosecond pulse source based on compression of externally-modulated pulse using 1.4 km comb-like profiled fibre", Electron. Lett., vol. 41, no. 14, pp. 797-798, Jul. 2005.

T. Inoue, H. Tobioka and S. Namiki, "Stationary rescaled pulse in alternately concatenated fibers with O(1) -accumulated nonlinear perturbations", Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 72, no. 2, p. 025601(R), 2005.

A. Maruta, T. Inoue, Y. Nonaka and Y. Yoshika, "Bisoliton propagating in dispersion-managed system and its application to high-speed and long-haul optical transmission", IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 3, pp. 640-650, May/Jun. 2002.

A. Hasegawa and Y. Kodama, "Guiding-center soliton in optical fibers", Opt. Lett., vol. 15, no. 24, pp. 1443-1446, Dec. 1990.

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow and I. Bennion, "Enhanced power solitons in optical fibers with periodic dispersion management", Electron. Lett., vol. 32, no. 1, pp. 54-55, Jan. 1996.

J. H. B. Nijhof, W. Forysiak and N. J. Doran, "The averaging method for finding exactly periodic dispersion-managed solitons", IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 2, pp. 330-336, Mar./Apr. 2000.

V. Cautaerts, A. Maruta and Y. Kodama, "On the dispersion managed soliton", Chaos, vol. 10, no. 3, pp. 515-528, 2000.

T. Inoue and S. Namiki, "Parametric noise amplification inherent in the coherence of fundamental optical soliton sequence propagating in fiber", IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 5, pp. 900-905, Sep./Oct. 2004.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. New York: Academic, 2001.

Y. Ozeki, S. Takasaka, T. Inoue, K. Igarashi, J. Hiroishi, R. Sugizaki, M. Sakano and S. Namiki, "Nearly exact optical beat-to-soliton train conversion based on comb-like profiled fiber emulating a polynomial dispersion decreasing profile", IEEE Photon. Technol. Lett., vol. 17, no. 8, pp. 1698-1700, Aug. 2005.

Y. Takushima and T. Okoshi, "Suppression of stimulated Brillouin scattering using optical isolators", Electron. Lett., vol. 28, no. 12, pp. 1155-1156, Jun. 1992.

K. Inoue, "Arrangement of fiber pieces for a wide wavelength conversion range by fiber four-wave mixing", Opt. Lett., vol. 19, no. 16, pp. 1189-1191, Aug. 1994.

M. E. Marhic, F. S. Yang, M.-C. Ho and L. G. Kazovsky, "High-nonlinearity fiber optical parametric amplifier with periodic dispersion compensation", J. Lightw. Technol., vol. 17, no. 2, pp. 210-215, Feb. 1999.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.