Abstract

Based on the rigorous electromagnetic wave theory, a numerical model for simulating the radiation characteristics of organic light-emitting devices (OLEDs) is developed. In particular, a novel method for overcoming the numerical difficulty in taking the thick glass substrate into account is proposed. The numerical results confirm the importance of the effects of the thick glass substrate. The algorithms based on the numerical model are then used for evaluating the dependencies of OLED radiation characteristics on various parameters, including the thickness of different device layers and the cathode metal variety. In the study of the effect of emission layer (EML) thickness, it is found that the radiation spectral peak red shifts with increasing EML thickness. This trend is consistent with the experimental result.

© 2006 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription