Abstract

Detailed strain and temperature characteristics of a 2° slanted multimode fiber Bragg grating (MFBG) are developed theoretically and observed experimentally. Results show that the strain and temperature sensitivities are almost the same for different transmission dips of the 2° slanted MFBG. Utilizing two characteristics of the 2° slanted MFBG, namely 1) resonant wavelength intensities strongly affected by excited mode propagating before the grating and 2) uniform strain sensitivities of different resonant wavelengths, a switchable and tunable multiwavelength fiber Raman ring laser is realized. The configuration is simple and multipurpose. Results show that the laser can generate single-, dual-, three-, four-, and five-wavelength lasing by switching between each operation if a mode scrambler (MS) that is inserted in front of the slanted MFBG is adjusted; furthermore, a 4.2-nm continuous wavelength-tuning range is achieved by straining the slanted MFBG when the MS is fixed.

© 2006 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription