Abstract

This study presents a novel generic multipurpose probe based on an array of 20 waveguide channels with microcantilevers acting as optical waveguides operated in the visible range. The principle of operation is based on the sensitivity of energy transfer between two butt-coupled waveguides to their misalignment with respect to each other. The technique can be considered an alternative to the known methods used for the readout of the nanomechanical response of microcantilevers to the external force exerted on them. The cantilever displacement can be detected with a resolution of 18 fm/sqrt Hz . The limit is generally defined by the shot noise of a conventional photodetector used for the readout of the output signal. Real-time parallel monitoring of several channels can be realized. In contrast to devices based on the atomic force microscope detection principle, no preliminary alignment or adjustment, except for light coupling, is required. The detection of the cantilever deflection at subnanometer range was demonstrated experimentally.

© 2006 IEEE

PDF Article

References

  • View by:
  • |

  1. R. McKendry, J. Zhang, Y. Arntz, T. Strunz, M. Hegner, H. P. Lang, M. K. Baller, U. Certa, E. Meyer, H.-J. Güntherodt and C. Gerber, "Multiple label free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array", Proc. Natl. Acad. Sci. US, vol. 99, no. 15, pp. 9783-9788, Jul. 2002.
  2. J. Tamayo, A. D. L. Humphris, A. M. Malloy and M. J. Miles, "Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor", Ultramicroscopy, vol. 86, no. 1/2, pp. 167-173, Jan. 2001.
  3. C. Kocabas and A. Aydinli, "Design and analysis of an integrated optical sensor for scanning force microscopies", IEEE Sens. J., vol. 5, no. 3, pp. 411-418, Jun. 2005.
  4. T. Fukuma, M. Kimura, K. Kobayashi, K. Matsushige and H. Yamada, "Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy", Rev. Sci. Instrum., vol. 76, no. 5, p. 053704, May 2005.
  5. C. Schonenberger and S. F. Alvarado, "A differential interferometer for force microscopy", Rev. Sci. Instrum., vol. 60, no. 10, pp. 3131-3134, Oct. 1989.
  6. J. Thaysen, A. Boisen, O. Hansen and S. Bouwstra, "Atomic force microscopy probe with piezoresistive read-out and a highly symmetrical Wheatstone bridge arrangement", Sens. Actuators A, Phys., vol. 83, no. 1-3, pp. 47-53, May 2000.
  7. P. A. Rasmussen, J. Thaysen, S. Bouwstra and A. Boisen, "Modular design of AFM probe with spattered silicon tip", Sens. Actuators A, Phys., vol. 92, no. 1-3, pp. 96-101, Aug. 2001.
  8. J. van Lith, P. V. Lambeck, H. J. W. M. Hoekstra, R. G. Heideman and R. R. Wijn, "The segmented waveguide sensor: Principle and experiments", J. Lightw. Technol., vol. 23, no. 1, pp. 355-363, Jan. 2005.
  9. R. Budakian and S. J. Putterman, "Force detection using a fiber-optic cantilever", Appl. Phys. Lett., vol. 81, no. 11, pp. 2100-2102, Sep. 2002.
  10. E. Ollier, P. Philippe, C. Chabrol and P. Mottier, "Micro-opto-mechanical vibration sensor integrated on silicon", J. Lightw. Technol., vol. 17, no. 1, pp. 26-29, Jan. 1999.
  11. M. Alvarez and J. Tamayo, "Optical sequential readout of microcantilever arrays for biological detection", Sens. Actuators B, Chem., vol. 106, no. 2, pp. 687-690, May 2005.
  12. M. Yue, H. Lin, D. E. Dedrick, S. Satyanarayana, A. Majumdar, A. S. Bedekar, J. W. Jenkins and S. Sundaram, "A 2-D microcantilever array for multiplexed biomolecular analysis", J. Microelectromech. Syst., vol. 13, no. 2, pp. 290-299, Apr. 2004.
  13. P. C. Lee, D. Schulz and E. Voges, "Three-dimensional finite difference beam propagation algorithms for photonic devices", J. Lightw. Technol., vol. 10, no. 12, pp. 1832-1838, Dec. 1992.
  14. D. Yevick and B. Hermansson, "Efficient beam propagation techniques", IEEE J. Quantum Electron., vol. 26, no. 1, pp. 109-112, Jan. 1990.
  15. E. Anemogiannis and E. N. Glytsis, "Multilayer waveguides: Efficient numerical analysis of general structures", J. Lightw. Technol., vol. 10, no. 10, pp. 1344-1351, Oct. 1992.
  16. R. G. Hunsperger, Integrated Optics: Theory and Technology, Berlin: Germany: Springer-Verlag, 1984.
  17. G. G. Yaralioglu, A. Atatar, S. R. Manalis and C. F. Quate, "Analysis and design of an interdigital cantilever as a displacement sensor", J. Appl. Phys., vol. 83, no. 12, pp. 7405-7415, Jun. 1998.

Other (17)

R. McKendry, J. Zhang, Y. Arntz, T. Strunz, M. Hegner, H. P. Lang, M. K. Baller, U. Certa, E. Meyer, H.-J. Güntherodt and C. Gerber, "Multiple label free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array", Proc. Natl. Acad. Sci. US, vol. 99, no. 15, pp. 9783-9788, Jul. 2002.

J. Tamayo, A. D. L. Humphris, A. M. Malloy and M. J. Miles, "Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor", Ultramicroscopy, vol. 86, no. 1/2, pp. 167-173, Jan. 2001.

C. Kocabas and A. Aydinli, "Design and analysis of an integrated optical sensor for scanning force microscopies", IEEE Sens. J., vol. 5, no. 3, pp. 411-418, Jun. 2005.

T. Fukuma, M. Kimura, K. Kobayashi, K. Matsushige and H. Yamada, "Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy", Rev. Sci. Instrum., vol. 76, no. 5, p. 053704, May 2005.

C. Schonenberger and S. F. Alvarado, "A differential interferometer for force microscopy", Rev. Sci. Instrum., vol. 60, no. 10, pp. 3131-3134, Oct. 1989.

J. Thaysen, A. Boisen, O. Hansen and S. Bouwstra, "Atomic force microscopy probe with piezoresistive read-out and a highly symmetrical Wheatstone bridge arrangement", Sens. Actuators A, Phys., vol. 83, no. 1-3, pp. 47-53, May 2000.

P. A. Rasmussen, J. Thaysen, S. Bouwstra and A. Boisen, "Modular design of AFM probe with spattered silicon tip", Sens. Actuators A, Phys., vol. 92, no. 1-3, pp. 96-101, Aug. 2001.

J. van Lith, P. V. Lambeck, H. J. W. M. Hoekstra, R. G. Heideman and R. R. Wijn, "The segmented waveguide sensor: Principle and experiments", J. Lightw. Technol., vol. 23, no. 1, pp. 355-363, Jan. 2005.

R. Budakian and S. J. Putterman, "Force detection using a fiber-optic cantilever", Appl. Phys. Lett., vol. 81, no. 11, pp. 2100-2102, Sep. 2002.

E. Ollier, P. Philippe, C. Chabrol and P. Mottier, "Micro-opto-mechanical vibration sensor integrated on silicon", J. Lightw. Technol., vol. 17, no. 1, pp. 26-29, Jan. 1999.

M. Alvarez and J. Tamayo, "Optical sequential readout of microcantilever arrays for biological detection", Sens. Actuators B, Chem., vol. 106, no. 2, pp. 687-690, May 2005.

M. Yue, H. Lin, D. E. Dedrick, S. Satyanarayana, A. Majumdar, A. S. Bedekar, J. W. Jenkins and S. Sundaram, "A 2-D microcantilever array for multiplexed biomolecular analysis", J. Microelectromech. Syst., vol. 13, no. 2, pp. 290-299, Apr. 2004.

P. C. Lee, D. Schulz and E. Voges, "Three-dimensional finite difference beam propagation algorithms for photonic devices", J. Lightw. Technol., vol. 10, no. 12, pp. 1832-1838, Dec. 1992.

D. Yevick and B. Hermansson, "Efficient beam propagation techniques", IEEE J. Quantum Electron., vol. 26, no. 1, pp. 109-112, Jan. 1990.

E. Anemogiannis and E. N. Glytsis, "Multilayer waveguides: Efficient numerical analysis of general structures", J. Lightw. Technol., vol. 10, no. 10, pp. 1344-1351, Oct. 1992.

R. G. Hunsperger, Integrated Optics: Theory and Technology, Berlin: Germany: Springer-Verlag, 1984.

G. G. Yaralioglu, A. Atatar, S. R. Manalis and C. F. Quate, "Analysis and design of an interdigital cantilever as a displacement sensor", J. Appl. Phys., vol. 83, no. 12, pp. 7405-7415, Jun. 1998.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.