Abstract

The waveguide structure of graded-index plastic optical fibers (GI POFs), such as index profile, numerical aperture (NA), and core diameter, is appropriately designed for eliminating bending losses, even under a severe bending condition. The bending loss of GI POFs under a severe bending condition is drastically reduced when the core diameter is smaller than 200 µm and when the NA is higher than 0.25. The bending loss of GI POFs even under a severe bending condition vanishes with a core diameter of 200 µm and an NA of 0.24. It is experimentally confirmed for the first time that the mode coupling due to the bending induces the bending loss. The mode coupling strength before the fiber is bent affects the bending loss seriously. Moreover, the mode-coupling strength is evaluated by the propagation constant difference Δβ between the adjacent modes. The Δβ value, which is a function of the core diameter and NA, affects the bending loss. Therefore, based on the calculation of the Δβ, we propose a guideline for the appropriate design of waveguide parameters for GI POF, in order to suppress the bending loss.

© 2006 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription