Abstract

The authors propose a new wavelength-dispersive principle based on waveguide group-index modification and apply this principle in a new type of arrayed waveguide dispersive element based on modified group index. The element is composed by an array of waveguides consisting of two sections with different group indexes. We deduce the applicable dispersion formula and demonstrate that the group-index modification can be used for controlling or enhancing device wavelength dispersion. Two device examples are provided. First, dispersive properties of a waveguide array with silicon on insulator (SOI) straight waveguides with group index modified by waveguide widening are calculated. Then, the authors show that by placing the element with modified group index in a phased array of a conventional arrayed waveguide grating (AWG) device, the dispersive properties of the AWG are markedly enhanced. Dispersion-enhancement factor of up to 60 is calculated for a compact demultiplexer designed for SOI platform with group index modified by photonic-bandgap effect.

© 2006 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription