Abstract

A new concept for a 1 × 2 micromechanical optical switch with 10 µs of switching speed, 29 dB of ON/OFF ratio, and insertion loss of -7.22 dB for λ = 1550 nm and -4.96 dB for λ = 635 nm is presented. The idea is to insert a micromechanical switching mechanism composed of a vertical silicon cantilever beam inside a hollow planar optical waveguide structured in a silicon-on-insulator (SOI) wafer. The switching beam in the Y hollow waveguide is electrostatically actuated, which makes it deflect to one side or the other in order to redirect light in one of the two outputs. Switching times of less than 10 µs were measured with the produced devices. Compared to classical microelectromechanical systems (MEMS) switches, the concept presents the advantage to decrease the risks of misalignment between the mirror and the optical waveguide, as the two elements are defined in the same process step, and as the mirror position is less critical than for classical MEMS switches. It also limits the optical losses due to beam spreading that occurs in free-space configuration. Three different optical surfaces for the hollow waveguides were studied-a gold coating, an antiresonant reflecting optical waveguide (ARROW) optical coating, and bare hollow silicon.

© 2006 IEEE

PDF Article

References

  • View by:
  • |

  1. D. J. Bishop, C. R. Giles and S. R. Das, "The rise of optical switching," Sci. Amer., vol. 284, no. 1, pp. 74-79, Jan. 2001.
  2. G. I. Papadimitriou, C. Papazoglou and A. S. Pomportsis, "Optical switching: Switch fabrics, techniques and architectures," J. Lightw. Technol., vol. 21, no. 2, pp. 384-405, Feb. 2003.
  3. B. Wu, "A comparison of optical switches and their applications," in Proc. Nat. Fiber Optic Engineers Conf. (NFOEC), Baltimore, MD, Jun. 8-12 2001, pp. 255-261.
  4. D. Chaires, "All-optical switching," in Proc. Nat. Fiber Optic Engineers Conf. (NFOEC), Dallas, TX, 2002, pp. 1868-1871.
  5. G. Ellinas, J.-F. Labourdette, J. A. Walker, S. Chaudhuri, L. Lin, E. Goldstein and K. Bala, "Network control and management challenges in opaque networks utilizing transparent optical switches," IEEE Commun. Mag., vol. 42, no. 2, pp. S16-S24, Feb. 2004.
  6. J. L. Jackel, J. J. Johnson and W. J. Tomlinson, "Bistable optical switching using electrochemically generated bubbles," Opt. Lett., vol. 15, no. 24, pp. 1470-1472, Dec. 1990.
  7. M. Sato, "Electrocapillarity optical switch," IEICE Trans. Commun., vol. E77-B, no. 2, pp. 197-203, Feb. 1994.
  8. M. Makihara, N. Sato, F. Shimokawa and Y. Nishida, "Micromechanical optical switches based on thermocapillary integrated in waveguide substrate," J. Lightw. Technol., vol. 17, no. 1, pp. 14-18, Jan. 1999.
  9. H. Togo, M. Sato and F. Shimokawa, "Multi-element thermo capillary optical switch and sub-nanoliter oil injection for its fabrication," in Proc. Int. Conf. Micro Electro Mechanical Systems (MEMS), Orlando, FL, Jan. 17-21 1999, pp. 418-423.
  10. T. Sakata, H. Togo, M. Makihara, F. Shimokawa and K. Kaneko, "Improvement of switching time in a thermocapillarity optical switch," in Proc. Optical Fiber Communication Conf. (OFC), Anaheim, CA, Mar. 17-22 2001, pp. WX3-1-WX3-3.
  11. J. E. Fouquet, S. Venkatesh, M. Troll, D. Chen, H. F. Wong and P. W. Barth, "A compact, scalable cross-connect switch using total internal reflection due to thermally-generated bubbles," in Proc. IEEE/LEOS Annu. Meeting, Orlando, FL, 1998, pp. 169-170.
  12. J. E. Fouquet, S. Venkatesh, M. Troll, D. Chen, S. Schiaffino and P. W. Barth, "Compact, scalable fiber optic cross-connect switches," in Proc. IEEE/LEOS Summer Topical Meeting, San Diego, CA, 1999, pp. 59-60.
  13. J. E. Fouquet, "Compact optical cross-connect switch based on total internal reflection in a fluid containing planar lightwave circuit," in Proc. Optical Fiber Communications Conf. (OFC), Baltimore, MD, Mar. 7-9 2000, pp. 204-206.
  14. J. A. Walker, "The future of MEMS in telecommunications network," J. Micromech. Microeng., vol. 10, no. 3, pp. R1-R7, Sep. 2000.
  15. P. B. Chu, S.-S. Lee and S. Park, "MEMS: The path to large optical crossconnects," IEEE Commun. Mag., vol. 40, no. 3, pp. 80-87, Mar. 2002.
  16. H. Fujita, "MEMS/MOEMS application to optical communication," in Proc. SPIE Micromachining and Microfabrication, San Francisco, CA, 2001, pp. 11-17.
  17. A. Neukermans and R. Ramaswami, "MEMS technology for optical networking applications," IEEE Commun. Mag., vol. 39, no. 1, pp. 62-69, Jan. 2001.
  18. L. Y. Lin and E. L. Goldstein, "Opportunities and challenges for MEMS in lightwave communications," IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 1, pp. 163-172, Jan./Feb. 2002.
  19. P. De Dobbelaere, K. Falta, L. Fan, S. Gloeckner and S. Patra, "Digital MEMS for optical switching," IEEE Commun. Mag., vol. 40, no. 3, pp. 88-95, Mar. 2002.
  20. P. De Dobbelaere, K. Falta and S. Gloeckner, "Advances in integrated 2D MEMS-based solutions for optical network applications," IEEE Commun. Mag., vol. 41, no. 5, pp. S16-S23, May 2003.
  21. L. Y. Lin, "Free-space micromachined optical switches for optical networking," IEEE J. Sel. Topics Quantum Electron., vol. 5, no. 1, pp. 4-9, Jan./Feb. 1999.
  22. T. Baba, Y. Kokubun, T. Sakaki and K. Iga, "Loss reduction of an ARROW waveguide in shorter wavelength and its stack configuration," J. Lightw. Technol., vol. 6, no. 9, pp. 1440-1445, Sep. 1988.
  23. S. S. Lee, L.-S. Huang, C.-J. Kim and M. C. Wu, "Free-space fiber optic switches based on MEMS vertical torsion mirrors," J. Lightw. Technol., vol. 17, no. 1, pp. 7-13, Jan. 1999.
  24. M. Cantin, C. Carignan, R. Côté, M. A. Duguay, R. Larose, P. LeBel and F. Ouellette, "Remotely switched hollow-core antiresonant reflecting optical waveguide," Opt. Lett., vol. 16, no. 22, pp. 1738-1740, Nov. 1991.
  25. A. Q. Liu, X. M. Zhang, V. M. Murukeshan, Q. X. Zhang, Q. B. Zou and S. Uppili, "Optical switch using draw-bridge micromirror for large array crossconnects," in Proc. Transducers, Munich, Germany,Jun. 10-14 2001, pp. 1324-1327.
  26. R. T. Chen, H. Nguyen and M. C. Wu, "A high speed low voltage stress induced micromachined 2 × 2 optical switch," IEEE Photon. Technol. Lett., vol. 11, no. 11, pp. 1396-1398, Nov. 1999.
  27. L. Y. Lin, E. L. Goldstein and R. W. Tkach, "On the expandability of free-space micromachined optical cross connects," J. Lightw. Technol., vol. 18, no. 4, pp. 482-489, Apr. 2000.
  28. P. Helin, M. Mita, T. Bourouina, G. Reyne and H. Fujita, "Self-aligned micromachining process for large-scale, free-space optical cross-connects," J. Lightw. Technol., vol. 18, no. 12, pp. 1785-1791, Dec. 2000.
  29. Y. Kato, T. Norimatsu, O. Imaki, T. Sasaki, K. Kondo and K. Mori, "Development of a multi-channel 2 × 2 optical switch," in Proc. Optical MEMS Conf., Lugano, Switzerland,Aug. 20-23 2002, pp. 161-162.
  30. C. T. Pan, "Silicon-based coupling platform for optical fiber switching in free space," J. Micromech. Microeng., vol. 14, no. 1, pp. 129-137, Jan. 2004.
  31. C. Marxer and N. F. De Rooij, "Micro-opto-mechanical 2 × 2 switch for single-mode fibers based on plasma-etched silicon mirror and electrostatic actuation," J. Lightw. Technol., vol. 17, no. 1, pp. 2-6, Jan. 1999.
  32. L. Dellmann, W. Noell, C. Marxer, K. Keible, M. Hoffmann and N. F. De Rooij, "4 × 4 matrix switch based on MEMS switches and integrated waveguides," in Proc. Transducers, Munich, Germany,Jun. 10-14 2001, pp. 1332-1335.
  33. M. Makihara, F. Shimokawa and Y. Nishida, "Self-holding optical waveguide switch controlled by micromechanisms," in Proc. Electronic Components and Technology Conf., Las Vegas, NV, May 21-24 1995, pp. 418-422.
  34. E. Ollier, C. Divoux, J. Margail, T. Enot, L. Ortiz, Y. Gobil, M. Sahli, P. Berruyer, A. Glière and A. Bontemps, "Electrostatically actuated micro-fluidic optical cross-connect switch," in Proc. Optical MEMS Conf., Waikoloa, HI, Aug. 18-21 2003, pp. 47-48.
  35. M. Katayama, T. Kanie, H. Okuyama, T. Sano, K. Koyama, T. Sasaki, C. Hirose, T. Hattori, M. Nishimura and S. Semura, "Micromachined curling optical switch array for PLC-based, integrated programmable add/drop multiplexer," in Proc. Optical Fibers Communication Conf., Anaheim, CA, Mar. 17-22 2001, pp. WX4-1-WX4-3.
  36. N. Iyer, C. H. Mastrangelo, S. Akkaraju, C. Brophy, T. G. McDonald, R. Dureiko and E. T. Carlen, "A two-dimensional optical cross-connect with integrated waveguides and surface micromachined crossbar switches," Sens. Actuators A, Phys., vol. 109, no. 3, pp. 231-241, Jan. 2004.
  37. R. Guerre, C. Hibert, Y. Burri, P. Flückiger and P. Renaud, "Fabrication of vertical digital silicon optical micro-mirrors on suspended electrode for guided wave optical switching applications," Sens. Actuators A, Phys., vol. 123-124, pp. 570-583, Sep. 2005.
  38. L. A. Field, D. L. Burriesci, P. R. Robrish and R. C. Ruby, "Micromachined 1 × 2 optical-fiber switch," Sens. Actuators A, Phys., vol. 53, no. 1-3, pp. 311-315, May 1996.
  39. E. Ollier, "Optical MEMS devices based on moving waveguides," IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 1, pp. 155-162, Jan./Feb. 2002.
  40. M. Hoffmann, P. Kopka and E. Voges, "Bistable micromechanical fiber-optic switches on silicon with thermal actuators," Sens. Actuators A, Phys., vol. 78, no. 1, pp. 28-35, Jan. 1999.
  41. T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan and O. B. Spahn, "Planar microoptomechanical waveguide switches," IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 1, pp. 64-72, Jan./Feb. 2002.
  42. I. Shubin and P. L. K. Wa, "Electrostatically actuated 1 × 2 micromechanical optic switch," Electron. Lett., vol. 37, no. 7, pp. 451-452, Mar. 2001.
  43. E. A. J. Marcatili and R. A. Schmelzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J., vol. 43, no. 4, pp. 1783-1809, Jul. 1964.
  44. M. Miyagi and S. Kawakami, "Design theory of dielectric coated circular metallic waveguides for infrared transmission," J. Lightw. Technol., vol. LT-2, no. 2, pp. 116-125, Apr. 1984.
  45. J. Dai and A. Harrington, "High-peak-power, pulsed CO2 laser light delivery by hollow glass waveguides," Appl. Opt., vol. 36, no. 21, pp. 5072-5077, Jul. 1997.
  46. P. Ball, "The next generation of optical fibers," Technol. Rev., vol. 104, no. 4, pp. 55-61, May 2001.
  47. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science, vol. 285, no. 5433, pp. 1537-1539, Sep. 1999.
  48. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos and E. L. Thomas, "A dielectric omnidirectional reflector," Science, vol. 282, no. 5394, pp. 1679-1682, Nov. 1998.
  49. J. N. Winn, Y. Fink, S. Fan and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Opt. Lett., vol. 23, no. 20, pp. 1573-1575, Oct. 1998.
  50. E. Yablonovitch, "Engineered omnidirectional external-reflectivity spectra from one-dimensional layered interference filters," Opt. Lett., vol. 23, no. 21, pp. 1648-1649, Nov. 1998.
  51. W. H. Southwell, "Omnidirectional mirror design with quarter-wave dielectrics stacks," Appl. Opt., vol. 38, no. 25, pp. 5464-5467, Sep. 1999.
  52. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos and E. L. Thomas, "Guiding optical light in air using an all dielectric structure," J. Lightw. Technol., vol. 17, no. 11, pp. 2039-2041, Nov. 1999.
  53. D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky and S. V. Gaponenko, "All-dielectric one-dimensional periodic structures for total omnidirectional reflection and partial spontaneous emission control," J. Lightw. Technol., vol. 17, no. 11, pp. 2018-2024, Nov. 1999.
  54. B. Gallas, S. Fisson, E. Charron, A. Brunet-Bruneau, G. Vuye and J. Rivory, "Making an omnidirectional reflector," Appl. Opt., vol. 40, no. 28, pp. 5056-5063, Oct. 2001.
  55. S.-H. Kim and C. K. Hwangbo, "Design of omnidirectional high reflectors with quarter-wave dielectric stacks for optical telecommunication bands," Appl. Opt., vol. 41, no. 16, pp. 3187-3192, Jun. 2002.
  56. M. Ibanescu, S. G. Johnson, M. Soljacic, J. D. Joannopoulos and Y. Fink, "Analysis of mode structure in hollow dielectric waveguide fibers," Phys. Rev. E, Statist. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 67, no. 4, pp. 046608-1-046608-8, Apr. 2003.
  57. B. S. Frost and P. M. Gourlay, "Geometrical optics treatment of rectangular lightguides," Appl. Opt., vol. 27, no. 7, pp. 1342-1348, Apr. 1988.
  58. J. J. Cousty and J. Marcou, "Study of grooves in silicon chip as means of optical interconnections in VLSI circuits," Opt. Commun., vol. 73, no. 1, pp. 23-31, Sep. 1989.
  59. F. E. Vermeulen, C. R. James and A. M. Robinson, "Hollow microstructural waveguides for propagation of infrared radiation," J. Lightw. Technol., vol. 9, no. 9, pp. 1053-1060, Sep. 1991.
  60. J. N. McMullin, R. Narendra and C. R. James, "Hollow metallic waveguides in silicon V-grooves," IEEE Photon. Technol. Lett., vol. 5, no. 9, pp. 1080-1082, Sep. 1993.
  61. F. E. Lytle and B. G. Splawn, "Performance of submillimeter square hollow waveguides," Appl. Opt., vol. 41, no. 31, pp. 6660-6665, Nov. 2002.
  62. R. M. Jenkins, M. E. McNie, A. F. Blockley, N. Price and J. McQuillan, "Hollow waveguides for integrated optics," in Proc. Eur. Conf. Optical Communication (ECOC), Rimini, Italy,Sep. 21-25 2003, pp. 162-163.
  63. R. M. Jenkins and M. E. McNie, "Optical circuit fabrication method and device," Patent WO03/065091, Dec. 22, 1986.
  64. R. M. Jenkins and J. N. McMullin, "Multi-mode interference optical waveguide device," Patent WO 03/065088, Aug. 7, 2003.
  65. T. Miura, F. Koyama and A. Matsutani, "Modeling and fabrication of hollow optical waveguide for photonic integrated circuits," Jpn. J. Appl. Phys., vol. 41, no. 7B, pp. 4785-4789, Jul. 2002.
  66. T. Miura, F. Koyama, Y. Aoki, A. Matsutani and K. Iga, "Hollow optical waveguide for temperature -insensitive photonic integrated circuits," Jpn. J. Appl. Phys., vol. 40, no. 7A, pp. L688-L690, Jul. 2001.
  67. T. Miura, F. Koyama and A. Matsutani, "Three dimensional hollow optical waveguide with an etched groove substrate," Jpn. J. Appl. Phys., vol. 41, no. 9, pp. 5607-5608, Sep. 2002.
  68. T. Miura, F. Koyama, A. Matsutani and T. Sakaguchi, "Novel variable optical attenuator based on three dimensional hollow waveguide," Jpn. J. Appl. Phys., vol. 42, no. 6A, pp. 3477-3478, Jun. 2003.
  69. T. Miura, M. Ishikawa, A. Matsutani and F. Koyama, "Hollow waveguide with variable air core for tunable planar waveguide devices," presented at the Eur. Conf. Optical Communication (ECOC), Rimini, Italy,Paper Tu1.2.3, Sep. 21-25, 2003.
  70. R. Bernini, S. Campopiano and L. Zeni, "Silicon micromachined hollow optical waveguides for sensing applications," IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 1, pp. 106-110, Jan./Feb. 2002.
  71. D. Yin and H. Schmidt, "Integrated ARROW waveguides with hollow cores," Opt. Express, vol. 12, no. 12, pp. 2710-2715, Jun. 2004.
  72. M. A. Duguay, T. L. Koch, Y. Kokubun and L. N. Pfeiffer, "Optical waveguide utilizing a layered structure," Patent EP0228886, Aug. 7, 2003.
  73. M. A. Duguay, Y. Kokubun, T. L. Koch and L. N. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett., vol. 49, no. 1, pp. 13-15, Jul. 1986.
  74. T. Baba, Y. Kokubun, T. Sakaki and K. Iga, "Loss reduction of an ARROW waveguide in shorter wavelength and its stack configuration," J. Lightw. Technol., vol. 6, no. 9, pp. 1440-1445, Sep. 1988.
  75. W. Jiang and J. Chrostowski, "Analysis of ARROW waveguides," Opt. Commun., vol. 72, no. 3-4, pp. 180-185, Jul. 1989.
  76. T. Baba and Y. Kokubun, "Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides, numerical results and analytical expressions," IEEE J Sel. Topics Quantum Electron., vol. 28, no. 7, pp. 1689-1700, Jul. 1992.
  77. W. Huang, R. M. Shubair, A. Nathan and Y. Leonard, "The model characteristics of ARROW structures," J. Lightw. Technol., vol. 10, no. 8, pp. 1015-1022, Aug. 1992.
  78. J.-L. Archambault, R. J. Black, S. Lacroix and J. Bures, "Loss calculations for antiresonant waveguides," J. Lightw. Technol., vol. 11, no. 3, pp. 416-423, Mar. 1993.
  79. M. Cantin, C. Carignan, R. Coté, M. A. Duguay, R. Larose, P. LeBel and F. Ouellette, "Remotely switched hollow-core antiresonant reflecting optical waveguide," Opt. Lett., vol. 16, no. 22, pp. 1738-1740, Nov. 1991.
  80. R. Bernini, S. Campopiano and L. Zeni, "Design and analysis of an integrated antiresonant reflecting optical waveguide refractive-index sensor," Appl. Opt., vol. 41, no. 1, pp. 70-73, Jan. 2002.
  81. K. E. Petersen, "Dynamic micromechanics on silicon: Techniques and devices," IEEE Trans. Electron Devices, vol. ED-25, no. 10, pp. 1241-1249, Oct. 1978.

Other (81)

D. J. Bishop, C. R. Giles and S. R. Das, "The rise of optical switching," Sci. Amer., vol. 284, no. 1, pp. 74-79, Jan. 2001.

G. I. Papadimitriou, C. Papazoglou and A. S. Pomportsis, "Optical switching: Switch fabrics, techniques and architectures," J. Lightw. Technol., vol. 21, no. 2, pp. 384-405, Feb. 2003.

B. Wu, "A comparison of optical switches and their applications," in Proc. Nat. Fiber Optic Engineers Conf. (NFOEC), Baltimore, MD, Jun. 8-12 2001, pp. 255-261.

D. Chaires, "All-optical switching," in Proc. Nat. Fiber Optic Engineers Conf. (NFOEC), Dallas, TX, 2002, pp. 1868-1871.

G. Ellinas, J.-F. Labourdette, J. A. Walker, S. Chaudhuri, L. Lin, E. Goldstein and K. Bala, "Network control and management challenges in opaque networks utilizing transparent optical switches," IEEE Commun. Mag., vol. 42, no. 2, pp. S16-S24, Feb. 2004.

J. L. Jackel, J. J. Johnson and W. J. Tomlinson, "Bistable optical switching using electrochemically generated bubbles," Opt. Lett., vol. 15, no. 24, pp. 1470-1472, Dec. 1990.

M. Sato, "Electrocapillarity optical switch," IEICE Trans. Commun., vol. E77-B, no. 2, pp. 197-203, Feb. 1994.

M. Makihara, N. Sato, F. Shimokawa and Y. Nishida, "Micromechanical optical switches based on thermocapillary integrated in waveguide substrate," J. Lightw. Technol., vol. 17, no. 1, pp. 14-18, Jan. 1999.

H. Togo, M. Sato and F. Shimokawa, "Multi-element thermo capillary optical switch and sub-nanoliter oil injection for its fabrication," in Proc. Int. Conf. Micro Electro Mechanical Systems (MEMS), Orlando, FL, Jan. 17-21 1999, pp. 418-423.

T. Sakata, H. Togo, M. Makihara, F. Shimokawa and K. Kaneko, "Improvement of switching time in a thermocapillarity optical switch," in Proc. Optical Fiber Communication Conf. (OFC), Anaheim, CA, Mar. 17-22 2001, pp. WX3-1-WX3-3.

J. E. Fouquet, S. Venkatesh, M. Troll, D. Chen, H. F. Wong and P. W. Barth, "A compact, scalable cross-connect switch using total internal reflection due to thermally-generated bubbles," in Proc. IEEE/LEOS Annu. Meeting, Orlando, FL, 1998, pp. 169-170.

J. E. Fouquet, S. Venkatesh, M. Troll, D. Chen, S. Schiaffino and P. W. Barth, "Compact, scalable fiber optic cross-connect switches," in Proc. IEEE/LEOS Summer Topical Meeting, San Diego, CA, 1999, pp. 59-60.

J. E. Fouquet, "Compact optical cross-connect switch based on total internal reflection in a fluid containing planar lightwave circuit," in Proc. Optical Fiber Communications Conf. (OFC), Baltimore, MD, Mar. 7-9 2000, pp. 204-206.

J. A. Walker, "The future of MEMS in telecommunications network," J. Micromech. Microeng., vol. 10, no. 3, pp. R1-R7, Sep. 2000.

P. B. Chu, S.-S. Lee and S. Park, "MEMS: The path to large optical crossconnects," IEEE Commun. Mag., vol. 40, no. 3, pp. 80-87, Mar. 2002.

H. Fujita, "MEMS/MOEMS application to optical communication," in Proc. SPIE Micromachining and Microfabrication, San Francisco, CA, 2001, pp. 11-17.

A. Neukermans and R. Ramaswami, "MEMS technology for optical networking applications," IEEE Commun. Mag., vol. 39, no. 1, pp. 62-69, Jan. 2001.

L. Y. Lin and E. L. Goldstein, "Opportunities and challenges for MEMS in lightwave communications," IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 1, pp. 163-172, Jan./Feb. 2002.

P. De Dobbelaere, K. Falta, L. Fan, S. Gloeckner and S. Patra, "Digital MEMS for optical switching," IEEE Commun. Mag., vol. 40, no. 3, pp. 88-95, Mar. 2002.

P. De Dobbelaere, K. Falta and S. Gloeckner, "Advances in integrated 2D MEMS-based solutions for optical network applications," IEEE Commun. Mag., vol. 41, no. 5, pp. S16-S23, May 2003.

L. Y. Lin, "Free-space micromachined optical switches for optical networking," IEEE J. Sel. Topics Quantum Electron., vol. 5, no. 1, pp. 4-9, Jan./Feb. 1999.

T. Baba, Y. Kokubun, T. Sakaki and K. Iga, "Loss reduction of an ARROW waveguide in shorter wavelength and its stack configuration," J. Lightw. Technol., vol. 6, no. 9, pp. 1440-1445, Sep. 1988.

S. S. Lee, L.-S. Huang, C.-J. Kim and M. C. Wu, "Free-space fiber optic switches based on MEMS vertical torsion mirrors," J. Lightw. Technol., vol. 17, no. 1, pp. 7-13, Jan. 1999.

M. Cantin, C. Carignan, R. Côté, M. A. Duguay, R. Larose, P. LeBel and F. Ouellette, "Remotely switched hollow-core antiresonant reflecting optical waveguide," Opt. Lett., vol. 16, no. 22, pp. 1738-1740, Nov. 1991.

A. Q. Liu, X. M. Zhang, V. M. Murukeshan, Q. X. Zhang, Q. B. Zou and S. Uppili, "Optical switch using draw-bridge micromirror for large array crossconnects," in Proc. Transducers, Munich, Germany,Jun. 10-14 2001, pp. 1324-1327.

R. T. Chen, H. Nguyen and M. C. Wu, "A high speed low voltage stress induced micromachined 2 × 2 optical switch," IEEE Photon. Technol. Lett., vol. 11, no. 11, pp. 1396-1398, Nov. 1999.

L. Y. Lin, E. L. Goldstein and R. W. Tkach, "On the expandability of free-space micromachined optical cross connects," J. Lightw. Technol., vol. 18, no. 4, pp. 482-489, Apr. 2000.

P. Helin, M. Mita, T. Bourouina, G. Reyne and H. Fujita, "Self-aligned micromachining process for large-scale, free-space optical cross-connects," J. Lightw. Technol., vol. 18, no. 12, pp. 1785-1791, Dec. 2000.

Y. Kato, T. Norimatsu, O. Imaki, T. Sasaki, K. Kondo and K. Mori, "Development of a multi-channel 2 × 2 optical switch," in Proc. Optical MEMS Conf., Lugano, Switzerland,Aug. 20-23 2002, pp. 161-162.

C. T. Pan, "Silicon-based coupling platform for optical fiber switching in free space," J. Micromech. Microeng., vol. 14, no. 1, pp. 129-137, Jan. 2004.

C. Marxer and N. F. De Rooij, "Micro-opto-mechanical 2 × 2 switch for single-mode fibers based on plasma-etched silicon mirror and electrostatic actuation," J. Lightw. Technol., vol. 17, no. 1, pp. 2-6, Jan. 1999.

L. Dellmann, W. Noell, C. Marxer, K. Keible, M. Hoffmann and N. F. De Rooij, "4 × 4 matrix switch based on MEMS switches and integrated waveguides," in Proc. Transducers, Munich, Germany,Jun. 10-14 2001, pp. 1332-1335.

M. Makihara, F. Shimokawa and Y. Nishida, "Self-holding optical waveguide switch controlled by micromechanisms," in Proc. Electronic Components and Technology Conf., Las Vegas, NV, May 21-24 1995, pp. 418-422.

E. Ollier, C. Divoux, J. Margail, T. Enot, L. Ortiz, Y. Gobil, M. Sahli, P. Berruyer, A. Glière and A. Bontemps, "Electrostatically actuated micro-fluidic optical cross-connect switch," in Proc. Optical MEMS Conf., Waikoloa, HI, Aug. 18-21 2003, pp. 47-48.

M. Katayama, T. Kanie, H. Okuyama, T. Sano, K. Koyama, T. Sasaki, C. Hirose, T. Hattori, M. Nishimura and S. Semura, "Micromachined curling optical switch array for PLC-based, integrated programmable add/drop multiplexer," in Proc. Optical Fibers Communication Conf., Anaheim, CA, Mar. 17-22 2001, pp. WX4-1-WX4-3.

N. Iyer, C. H. Mastrangelo, S. Akkaraju, C. Brophy, T. G. McDonald, R. Dureiko and E. T. Carlen, "A two-dimensional optical cross-connect with integrated waveguides and surface micromachined crossbar switches," Sens. Actuators A, Phys., vol. 109, no. 3, pp. 231-241, Jan. 2004.

R. Guerre, C. Hibert, Y. Burri, P. Flückiger and P. Renaud, "Fabrication of vertical digital silicon optical micro-mirrors on suspended electrode for guided wave optical switching applications," Sens. Actuators A, Phys., vol. 123-124, pp. 570-583, Sep. 2005.

L. A. Field, D. L. Burriesci, P. R. Robrish and R. C. Ruby, "Micromachined 1 × 2 optical-fiber switch," Sens. Actuators A, Phys., vol. 53, no. 1-3, pp. 311-315, May 1996.

E. Ollier, "Optical MEMS devices based on moving waveguides," IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 1, pp. 155-162, Jan./Feb. 2002.

M. Hoffmann, P. Kopka and E. Voges, "Bistable micromechanical fiber-optic switches on silicon with thermal actuators," Sens. Actuators A, Phys., vol. 78, no. 1, pp. 28-35, Jan. 1999.

T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan and O. B. Spahn, "Planar microoptomechanical waveguide switches," IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 1, pp. 64-72, Jan./Feb. 2002.

I. Shubin and P. L. K. Wa, "Electrostatically actuated 1 × 2 micromechanical optic switch," Electron. Lett., vol. 37, no. 7, pp. 451-452, Mar. 2001.

E. A. J. Marcatili and R. A. Schmelzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J., vol. 43, no. 4, pp. 1783-1809, Jul. 1964.

M. Miyagi and S. Kawakami, "Design theory of dielectric coated circular metallic waveguides for infrared transmission," J. Lightw. Technol., vol. LT-2, no. 2, pp. 116-125, Apr. 1984.

J. Dai and A. Harrington, "High-peak-power, pulsed CO2 laser light delivery by hollow glass waveguides," Appl. Opt., vol. 36, no. 21, pp. 5072-5077, Jul. 1997.

P. Ball, "The next generation of optical fibers," Technol. Rev., vol. 104, no. 4, pp. 55-61, May 2001.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science, vol. 285, no. 5433, pp. 1537-1539, Sep. 1999.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos and E. L. Thomas, "A dielectric omnidirectional reflector," Science, vol. 282, no. 5394, pp. 1679-1682, Nov. 1998.

J. N. Winn, Y. Fink, S. Fan and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Opt. Lett., vol. 23, no. 20, pp. 1573-1575, Oct. 1998.

E. Yablonovitch, "Engineered omnidirectional external-reflectivity spectra from one-dimensional layered interference filters," Opt. Lett., vol. 23, no. 21, pp. 1648-1649, Nov. 1998.

W. H. Southwell, "Omnidirectional mirror design with quarter-wave dielectrics stacks," Appl. Opt., vol. 38, no. 25, pp. 5464-5467, Sep. 1999.

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos and E. L. Thomas, "Guiding optical light in air using an all dielectric structure," J. Lightw. Technol., vol. 17, no. 11, pp. 2039-2041, Nov. 1999.

D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky and S. V. Gaponenko, "All-dielectric one-dimensional periodic structures for total omnidirectional reflection and partial spontaneous emission control," J. Lightw. Technol., vol. 17, no. 11, pp. 2018-2024, Nov. 1999.

B. Gallas, S. Fisson, E. Charron, A. Brunet-Bruneau, G. Vuye and J. Rivory, "Making an omnidirectional reflector," Appl. Opt., vol. 40, no. 28, pp. 5056-5063, Oct. 2001.

S.-H. Kim and C. K. Hwangbo, "Design of omnidirectional high reflectors with quarter-wave dielectric stacks for optical telecommunication bands," Appl. Opt., vol. 41, no. 16, pp. 3187-3192, Jun. 2002.

M. Ibanescu, S. G. Johnson, M. Soljacic, J. D. Joannopoulos and Y. Fink, "Analysis of mode structure in hollow dielectric waveguide fibers," Phys. Rev. E, Statist. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 67, no. 4, pp. 046608-1-046608-8, Apr. 2003.

B. S. Frost and P. M. Gourlay, "Geometrical optics treatment of rectangular lightguides," Appl. Opt., vol. 27, no. 7, pp. 1342-1348, Apr. 1988.

J. J. Cousty and J. Marcou, "Study of grooves in silicon chip as means of optical interconnections in VLSI circuits," Opt. Commun., vol. 73, no. 1, pp. 23-31, Sep. 1989.

F. E. Vermeulen, C. R. James and A. M. Robinson, "Hollow microstructural waveguides for propagation of infrared radiation," J. Lightw. Technol., vol. 9, no. 9, pp. 1053-1060, Sep. 1991.

J. N. McMullin, R. Narendra and C. R. James, "Hollow metallic waveguides in silicon V-grooves," IEEE Photon. Technol. Lett., vol. 5, no. 9, pp. 1080-1082, Sep. 1993.

F. E. Lytle and B. G. Splawn, "Performance of submillimeter square hollow waveguides," Appl. Opt., vol. 41, no. 31, pp. 6660-6665, Nov. 2002.

R. M. Jenkins, M. E. McNie, A. F. Blockley, N. Price and J. McQuillan, "Hollow waveguides for integrated optics," in Proc. Eur. Conf. Optical Communication (ECOC), Rimini, Italy,Sep. 21-25 2003, pp. 162-163.

R. M. Jenkins and M. E. McNie, "Optical circuit fabrication method and device," Patent WO03/065091, Dec. 22, 1986.

R. M. Jenkins and J. N. McMullin, "Multi-mode interference optical waveguide device," Patent WO 03/065088, Aug. 7, 2003.

T. Miura, F. Koyama and A. Matsutani, "Modeling and fabrication of hollow optical waveguide for photonic integrated circuits," Jpn. J. Appl. Phys., vol. 41, no. 7B, pp. 4785-4789, Jul. 2002.

T. Miura, F. Koyama, Y. Aoki, A. Matsutani and K. Iga, "Hollow optical waveguide for temperature -insensitive photonic integrated circuits," Jpn. J. Appl. Phys., vol. 40, no. 7A, pp. L688-L690, Jul. 2001.

T. Miura, F. Koyama and A. Matsutani, "Three dimensional hollow optical waveguide with an etched groove substrate," Jpn. J. Appl. Phys., vol. 41, no. 9, pp. 5607-5608, Sep. 2002.

T. Miura, F. Koyama, A. Matsutani and T. Sakaguchi, "Novel variable optical attenuator based on three dimensional hollow waveguide," Jpn. J. Appl. Phys., vol. 42, no. 6A, pp. 3477-3478, Jun. 2003.

T. Miura, M. Ishikawa, A. Matsutani and F. Koyama, "Hollow waveguide with variable air core for tunable planar waveguide devices," presented at the Eur. Conf. Optical Communication (ECOC), Rimini, Italy,Paper Tu1.2.3, Sep. 21-25, 2003.

R. Bernini, S. Campopiano and L. Zeni, "Silicon micromachined hollow optical waveguides for sensing applications," IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 1, pp. 106-110, Jan./Feb. 2002.

D. Yin and H. Schmidt, "Integrated ARROW waveguides with hollow cores," Opt. Express, vol. 12, no. 12, pp. 2710-2715, Jun. 2004.

M. A. Duguay, T. L. Koch, Y. Kokubun and L. N. Pfeiffer, "Optical waveguide utilizing a layered structure," Patent EP0228886, Aug. 7, 2003.

M. A. Duguay, Y. Kokubun, T. L. Koch and L. N. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett., vol. 49, no. 1, pp. 13-15, Jul. 1986.

T. Baba, Y. Kokubun, T. Sakaki and K. Iga, "Loss reduction of an ARROW waveguide in shorter wavelength and its stack configuration," J. Lightw. Technol., vol. 6, no. 9, pp. 1440-1445, Sep. 1988.

W. Jiang and J. Chrostowski, "Analysis of ARROW waveguides," Opt. Commun., vol. 72, no. 3-4, pp. 180-185, Jul. 1989.

T. Baba and Y. Kokubun, "Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides, numerical results and analytical expressions," IEEE J Sel. Topics Quantum Electron., vol. 28, no. 7, pp. 1689-1700, Jul. 1992.

W. Huang, R. M. Shubair, A. Nathan and Y. Leonard, "The model characteristics of ARROW structures," J. Lightw. Technol., vol. 10, no. 8, pp. 1015-1022, Aug. 1992.

J.-L. Archambault, R. J. Black, S. Lacroix and J. Bures, "Loss calculations for antiresonant waveguides," J. Lightw. Technol., vol. 11, no. 3, pp. 416-423, Mar. 1993.

M. Cantin, C. Carignan, R. Coté, M. A. Duguay, R. Larose, P. LeBel and F. Ouellette, "Remotely switched hollow-core antiresonant reflecting optical waveguide," Opt. Lett., vol. 16, no. 22, pp. 1738-1740, Nov. 1991.

R. Bernini, S. Campopiano and L. Zeni, "Design and analysis of an integrated antiresonant reflecting optical waveguide refractive-index sensor," Appl. Opt., vol. 41, no. 1, pp. 70-73, Jan. 2002.

K. E. Petersen, "Dynamic micromechanics on silicon: Techniques and devices," IEEE Trans. Electron Devices, vol. ED-25, no. 10, pp. 1241-1249, Oct. 1978.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.