Abstract

Microring resonators can be exploited for biochemical sensing applications. To gain a better understanding of the design and optimization of microring sensors, the authors analytically derive the detection limit and the sensitivity. Other important parameters, including the ON-OFF contrast ratio and the signal-to-noise ratio (SNR), are also considered. In this paper, the combination of two sensing mechanisms and two sensing schemes are analyzed. These calculations provide a guideline for determining the microring geometry to satisfy the desired sensing requirements. In addition, the results can provide insights on how to enhance the sensitivity and lower the detection limit.

© 2006 IEEE

PDF Article

References

  • View by:
  • |

  1. T. Okamoto, M. Yamamoto and I. Yamaguchi, "Optical waveguide absorption sensor using a single coupling prism," J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 17, no. 10, pp. 1880-1886, Oct. 2000.
  2. B. J. Luff, R. D. Harris, J. S. Wilkinson, R. Wilson and D. J. Schiffrin, "Integrated-optical directional coupler biosensor," Opt. Lett., vol. 21, no. 8, pp. 618-620, Apr. 1996.
  3. Z. Qi, N. Matsuda, K. Itoh, M. Murabayashi and C. R. Lavers, "A design for improving the sensitivity of a Mach-Zehnder interferometer to chemical and biological measurands," Sens. Actuators B, Chem., vol. 81, no. 2, pp. 254-258, Jan. 2002.
  4. R. Hornath, H. C. Pedersen, N. Skivesen, D. Selmeczi and N. B. Larsen, "Optical waveguide sensor for on-line monitoring of bacteria," Opt. Lett., vol. 28, no. 14, pp. 1233-1235, Jul. 2003.
  5. R. Hornath, H. C. Pedersen, N. Skivesen, D. Selmeczi and N. B. Larsen, "Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing," Appl. Phys. Lett., vol. 86, no. 7, p. 071101, Feb. 2005.
  6. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve and C. Otto, "Integrated optical microcavities for enhanced evanescent-wave spectroscopy," Opt. Lett., vol. 27, no. 17, pp. 1504-1506, Sep. 2002.
  7. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve and C. Otto, "Sensor based on an integrated optical microcavity," Opt. Lett., vol. 27, no. 17, pp. 512-514, Apr. 2002.
  8. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett., vol. 80, no. 21, pp. 4057-4059, May 2002.
  9. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler and F. Vollmer, "Shift of whispering-gallery modes in microspheres by protein adsorption," Opt. Lett., vol. 28, no. 4, pp. 272-274, Feb. 2003.
  10. C.-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett., vol. 83, no. 8, pp. 1527-1529, Aug. 2003.
  11. S. Blair and Y. Chen, "Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities," Appl. Opt., vol. 40, no. 4, pp. 570-582, Nov. 2001.
  12. R. W. Boyd and J. E. Heebner, "Sensitive disk resonator photonic biosensor," Appl. Opt., vol. 40, no. 31, pp. 5742-5747, Nov. 2001.
  13. K. Okamoto, Fundamentals of Optical Waveguides, San Diego, CA: Academic, 2000, ch. 2.
  14. C.-Y. Chao, W. Fung and L. J. Guo, "High Q-factor polymer microring resonators used in the biochemically sensing applications," IEEE J. Sel. Topics Quantum Electron.,
  15. C.-Y. Chao and L. J. Guo, "Polymer microring resonators fabricated by nanoimprint technique," J. Vac. Sci. Technol. B, Microelectron. Process. Phenom., vol. 20, no. 6, pp. 2862-2866, Nov./Dec. 2002.
  16. C.-Y. Chao and L. J. Guo, "Reduction of surface scattering loss in polymer microrings using thermal-reflow technique," IEEE Photon. Technol. Lett., vol. 16, no. 6, pp. 1498-1500, Jun. 2004.
  17. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi and J.-P. Laine, "Microring resonator channel dropping filters," J. Lightw. Technol., vol. 15, no. 6, pp. 998-1005, Jun. 1997.
  18. H. Nishihara, M. Haruna and T. Suhara, Optical Integrated Circuits, New York: McGraw-Hill, 1989, ch. 2.

Other

T. Okamoto, M. Yamamoto and I. Yamaguchi, "Optical waveguide absorption sensor using a single coupling prism," J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 17, no. 10, pp. 1880-1886, Oct. 2000.

B. J. Luff, R. D. Harris, J. S. Wilkinson, R. Wilson and D. J. Schiffrin, "Integrated-optical directional coupler biosensor," Opt. Lett., vol. 21, no. 8, pp. 618-620, Apr. 1996.

Z. Qi, N. Matsuda, K. Itoh, M. Murabayashi and C. R. Lavers, "A design for improving the sensitivity of a Mach-Zehnder interferometer to chemical and biological measurands," Sens. Actuators B, Chem., vol. 81, no. 2, pp. 254-258, Jan. 2002.

R. Hornath, H. C. Pedersen, N. Skivesen, D. Selmeczi and N. B. Larsen, "Optical waveguide sensor for on-line monitoring of bacteria," Opt. Lett., vol. 28, no. 14, pp. 1233-1235, Jul. 2003.

R. Hornath, H. C. Pedersen, N. Skivesen, D. Selmeczi and N. B. Larsen, "Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing," Appl. Phys. Lett., vol. 86, no. 7, p. 071101, Feb. 2005.

E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve and C. Otto, "Integrated optical microcavities for enhanced evanescent-wave spectroscopy," Opt. Lett., vol. 27, no. 17, pp. 1504-1506, Sep. 2002.

E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve and C. Otto, "Sensor based on an integrated optical microcavity," Opt. Lett., vol. 27, no. 17, pp. 512-514, Apr. 2002.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett., vol. 80, no. 21, pp. 4057-4059, May 2002.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler and F. Vollmer, "Shift of whispering-gallery modes in microspheres by protein adsorption," Opt. Lett., vol. 28, no. 4, pp. 272-274, Feb. 2003.

C.-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett., vol. 83, no. 8, pp. 1527-1529, Aug. 2003.

S. Blair and Y. Chen, "Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities," Appl. Opt., vol. 40, no. 4, pp. 570-582, Nov. 2001.

R. W. Boyd and J. E. Heebner, "Sensitive disk resonator photonic biosensor," Appl. Opt., vol. 40, no. 31, pp. 5742-5747, Nov. 2001.

K. Okamoto, Fundamentals of Optical Waveguides, San Diego, CA: Academic, 2000, ch. 2.

C.-Y. Chao, W. Fung and L. J. Guo, "High Q-factor polymer microring resonators used in the biochemically sensing applications," IEEE J. Sel. Topics Quantum Electron.,

C.-Y. Chao and L. J. Guo, "Polymer microring resonators fabricated by nanoimprint technique," J. Vac. Sci. Technol. B, Microelectron. Process. Phenom., vol. 20, no. 6, pp. 2862-2866, Nov./Dec. 2002.

C.-Y. Chao and L. J. Guo, "Reduction of surface scattering loss in polymer microrings using thermal-reflow technique," IEEE Photon. Technol. Lett., vol. 16, no. 6, pp. 1498-1500, Jun. 2004.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi and J.-P. Laine, "Microring resonator channel dropping filters," J. Lightw. Technol., vol. 15, no. 6, pp. 998-1005, Jun. 1997.

H. Nishihara, M. Haruna and T. Suhara, Optical Integrated Circuits, New York: McGraw-Hill, 1989, ch. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.