Abstract

A novel interferometric scheme for photonic analog-to-digital conversion is for the first time experimentally demonstrated at a real-time sample rate of 40 gigasamples/s. The scheme includes sampling as well as binary encoding, and the input signal in the experiment was a 1.25-GHz sinusoidal tone that was successfully digitized with a nominal resolution of 21 digital levels. Single-sample measurements yielded an effective number of bits (ENOB) of 2.6, which was limited by thermal detection noise while multisample averaged measurements resulted in an ENOB of 3.6 bits, mainly limited by phase drift. Apart from the experimental results, this paper covers an extensive theoretical analysis of the system, including calculations on the fundamental maximum bandwidth, the required optical power, the generated binary code, and its error robustness, as well as the impact of detection noise on the signal-to-noise ratio of the digitized signal. The major benefits of this interferometric scheme are that only one standard phase modulator is required and that the phase swing does not have to be larger than ±π to reach the full digital value space.

© 2006 IEEE

PDF Article

References

  • View by:
  • |

  1. R. H. Walden, "Analog-to-digital converter survey and analysis," IEEE J. Sel. Areas Commun., vol. 17, no. 4, pp. 539-550, Apr. 1999.
  2. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray and R. C. Williamson, "Optically sampled analog-to-digital converters," IEEE Trans. Microw. Theory Tech., vol. 49, no. 10, pp. 1840-1853, Oct. 2001.
  3. S.-I. Oda and A. Maruta, "A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion," IEEE Photon. Technol. Lett., vol. 17, no. 2, pp. 465-467, Feb. 2005.
  4. S. Oda, A. Maruta and K. Kitayama, "All-optical quantization scheme based on fiber nonlinearity," IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 587-589, Feb. 2004.
  5. H. Sakata, "Photonic analog-to-digital conversion by use of nonlinear Fabry-Perot resonators," Appl. Opt., vol. 40, no. 2, pp. 240-248, Jan. 2001.
  6. M. J. Hayduk, R. J. Bussjager and M. A. Getbehead, "Photonic analog-to-digital conversion techniques using semiconductor saturable absorbers," Proc. SPIE, vol. 4042, pp. 54-60, 2000.
  7. H. Taylor, "An optical analog-to-digital converter-Design and analysis," IEEE J. Quantum Electron., vol. QE-15, no. 4, pp. 210-216, Apr. 1979.
  8. R. A. Becker, C. E. Woodward, F. J. Leonberger and R. C. Williamson, "Wide-band electrooptic guided-wave analog-to-digital converters," Proc. IEEE, vol. PROC-72, no. 7, pp. 802-819, Jul. 1984.
  9. J. Stigwall and S. Galt, "Interferometric analog-to-digital conversion scheme," IEEE Photon. Technol. Lett., vol. 17, no. 2, pp. 468-470, Feb. 2005.
  10. P. E. Pace and D. D. Styer, "High-resolution encoding process for an integrated optical analog-to-digital converter," Opt. Eng., vol. 33, no. 8, pp. 2638-2645, Aug. 1994.
  11. B. Jalali and Y. M. Xie, "Optical folding-flash analog-to-digital converter with analog encoding," Opt. Lett., vol. 20, no. 18, pp. 1901-1903, Sep. 1995.
  12. M. Currie, "Optical quantization of microwave signals via distributed phase modulation," J. Lightw. Technol., vol. 23, no. 2, pp. 827-833, Feb. 2005.
  13. Y. Tsunoda and J. W. Goodman, "Combined optical AD conversion and page composition for holographic memory applications," Appl. Opt., vol. 16, no. 10, pp. 2607-2609, Oct. 1977.
  14. J. Stigwall, S. Galt and S. Hård, "Experimental evaluation of an ultra-fast free space optical analog-to-digital conversion scheme using a tunable semiconductor laser," Proc. SPIE, vol. 5466, pp. 123-130, 2004.
  15. M. Johansson, B. Lofving, S. Hard, L. Thylen, M. Mokhtari, U. Westergren and C. Pala, "Study of an ultrafast analog-to-digital conversion scheme based on diffractive optics," Appl. Opt., vol. 39, no. 17, pp. 2881-2887, Jun. 2000.
  16. C. Pala, L. Thylen, M. Mokhtari and U. Westergren, "A high-speed electro-optical analog-to-digital converter principle," in Proc. IEEE Int. Symp. Circuits and Systems, Sydney, Australia, 2001, pp. 432-435.
  17. S. Galt, A. Magnusson and S. Hård, "Dynamic demonstration of diffractive optic analog-to-digital converter scheme," Appl. Opt., vol. 42, no. 2, pp. 264-270, Jan. 2003.
  18. T. R. Clark Jr. and M. L. Dennis, "Toward a 100-Gsample/s photonic A-D converter," IEEE Photon. Technol. Lett., vol. 13, no. 3, pp. 236-238, Mar. 2001.
  19. F. Coppinger, A. S. Bhushan and N. Jalali, "12 Gsample/s wavelength division sampling analogue-to-digital converter," Electron. Lett., vol. 36, no. 4, pp. 316-318, Feb. 2000.
  20. F. Coppinger, A. S. Bhushan and B. Jalali, "Photonic time stretch and its application to analog-to-digital conversion," IEEE Trans. Microw. Theory Tech., vol. 47, no. 7, pp. 1309-1314, Jul. 1999.
  21. R. van de Plassche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters, 2nd ed. Boston, MA: Kluwer, 2003, pp. 114-115.
  22. N. M. Blachman, "Intermodulation and distortion due to quantization of sinusoids," IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-33, no. 6, pp. 1417-1426, Dec. 1985.
  23. G. P. Agrawal, Fiber-Optic Communication Systems, New York: Wiley, 2002, p.158.
  24. K. H. Lundberg, "High-Speed Analog-to-Digital Converter Survey," Jan. 2006.
  25. D. Wolfson, A. Kloch, T. Fjelde, C. Janz, B. Dagens and M. Renaud, "40-Gb/s all-optical wavelength conversion, regeneration and demultiplexing in an SOA-based all-active Mach-Zehnder interferometer," IEEE Photon. Technol. Lett., vol. 12, no. 3, pp. 332-334, Mar. 2000.
  26. K. E. Stubkjaer, "Semiconductor optical amplifier-based all-optical gates for high-speed optical processing," IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 6, pp. 1428-1435, Nov./Dec. 2000.
  27. T. Otani, T. Miyazaki and S. Yamamoto, "40-Gb/s optical 3R regenerator using electroabsorption modulators for optical networks," J. Lightw. Technol., vol. 20, no. 2, pp. 195-200, Feb. 2002.
  28. J. K. Lucek and K. Smith, "All-optical signal regenerator," Opt. Lett., vol. 18, no. 15, pp. 1226-1228, Aug. 1993.
  29. T. Sakamoto and K. Kikuchi, "160-Gb/s operation of nonlinear optical loop-mirror with an optical bias controller," IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 1058-1060, May 2005.
  30. F. Zhang and J. W. Y. Lit, "Temperature and strain sensitivity measurements of high-birefringent polarization-maintaining fibers," Appl. Opt., vol. 32, no. 13, pp. 2213-2218, May 1993.
  31. J. J. Carr, S. L. Saikkonen and D. H. Williams, "Refractive index measurements on single-mode fiber as functions of product parameters, tensile stress and temperature," Fiber Integr. Opt., vol. 9, no. 4, pp. 393-396, 1990.
  32. A. Michie, J. Canning, K. Lyytikäinen, M. Åslund and J. Digweed, "Temperature independent highly birefringent photonic crystal fibre," Opt. Express, vol. 12, no. 21, pp. 5160-5165, Oct. 2004.

Other (32)

R. H. Walden, "Analog-to-digital converter survey and analysis," IEEE J. Sel. Areas Commun., vol. 17, no. 4, pp. 539-550, Apr. 1999.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray and R. C. Williamson, "Optically sampled analog-to-digital converters," IEEE Trans. Microw. Theory Tech., vol. 49, no. 10, pp. 1840-1853, Oct. 2001.

S.-I. Oda and A. Maruta, "A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion," IEEE Photon. Technol. Lett., vol. 17, no. 2, pp. 465-467, Feb. 2005.

S. Oda, A. Maruta and K. Kitayama, "All-optical quantization scheme based on fiber nonlinearity," IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 587-589, Feb. 2004.

H. Sakata, "Photonic analog-to-digital conversion by use of nonlinear Fabry-Perot resonators," Appl. Opt., vol. 40, no. 2, pp. 240-248, Jan. 2001.

M. J. Hayduk, R. J. Bussjager and M. A. Getbehead, "Photonic analog-to-digital conversion techniques using semiconductor saturable absorbers," Proc. SPIE, vol. 4042, pp. 54-60, 2000.

H. Taylor, "An optical analog-to-digital converter-Design and analysis," IEEE J. Quantum Electron., vol. QE-15, no. 4, pp. 210-216, Apr. 1979.

R. A. Becker, C. E. Woodward, F. J. Leonberger and R. C. Williamson, "Wide-band electrooptic guided-wave analog-to-digital converters," Proc. IEEE, vol. PROC-72, no. 7, pp. 802-819, Jul. 1984.

J. Stigwall and S. Galt, "Interferometric analog-to-digital conversion scheme," IEEE Photon. Technol. Lett., vol. 17, no. 2, pp. 468-470, Feb. 2005.

P. E. Pace and D. D. Styer, "High-resolution encoding process for an integrated optical analog-to-digital converter," Opt. Eng., vol. 33, no. 8, pp. 2638-2645, Aug. 1994.

B. Jalali and Y. M. Xie, "Optical folding-flash analog-to-digital converter with analog encoding," Opt. Lett., vol. 20, no. 18, pp. 1901-1903, Sep. 1995.

M. Currie, "Optical quantization of microwave signals via distributed phase modulation," J. Lightw. Technol., vol. 23, no. 2, pp. 827-833, Feb. 2005.

Y. Tsunoda and J. W. Goodman, "Combined optical AD conversion and page composition for holographic memory applications," Appl. Opt., vol. 16, no. 10, pp. 2607-2609, Oct. 1977.

J. Stigwall, S. Galt and S. Hård, "Experimental evaluation of an ultra-fast free space optical analog-to-digital conversion scheme using a tunable semiconductor laser," Proc. SPIE, vol. 5466, pp. 123-130, 2004.

M. Johansson, B. Lofving, S. Hard, L. Thylen, M. Mokhtari, U. Westergren and C. Pala, "Study of an ultrafast analog-to-digital conversion scheme based on diffractive optics," Appl. Opt., vol. 39, no. 17, pp. 2881-2887, Jun. 2000.

C. Pala, L. Thylen, M. Mokhtari and U. Westergren, "A high-speed electro-optical analog-to-digital converter principle," in Proc. IEEE Int. Symp. Circuits and Systems, Sydney, Australia, 2001, pp. 432-435.

S. Galt, A. Magnusson and S. Hård, "Dynamic demonstration of diffractive optic analog-to-digital converter scheme," Appl. Opt., vol. 42, no. 2, pp. 264-270, Jan. 2003.

T. R. Clark Jr. and M. L. Dennis, "Toward a 100-Gsample/s photonic A-D converter," IEEE Photon. Technol. Lett., vol. 13, no. 3, pp. 236-238, Mar. 2001.

F. Coppinger, A. S. Bhushan and N. Jalali, "12 Gsample/s wavelength division sampling analogue-to-digital converter," Electron. Lett., vol. 36, no. 4, pp. 316-318, Feb. 2000.

F. Coppinger, A. S. Bhushan and B. Jalali, "Photonic time stretch and its application to analog-to-digital conversion," IEEE Trans. Microw. Theory Tech., vol. 47, no. 7, pp. 1309-1314, Jul. 1999.

R. van de Plassche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters, 2nd ed. Boston, MA: Kluwer, 2003, pp. 114-115.

N. M. Blachman, "Intermodulation and distortion due to quantization of sinusoids," IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-33, no. 6, pp. 1417-1426, Dec. 1985.

G. P. Agrawal, Fiber-Optic Communication Systems, New York: Wiley, 2002, p.158.

K. H. Lundberg, "High-Speed Analog-to-Digital Converter Survey," Jan. 2006.

D. Wolfson, A. Kloch, T. Fjelde, C. Janz, B. Dagens and M. Renaud, "40-Gb/s all-optical wavelength conversion, regeneration and demultiplexing in an SOA-based all-active Mach-Zehnder interferometer," IEEE Photon. Technol. Lett., vol. 12, no. 3, pp. 332-334, Mar. 2000.

K. E. Stubkjaer, "Semiconductor optical amplifier-based all-optical gates for high-speed optical processing," IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 6, pp. 1428-1435, Nov./Dec. 2000.

T. Otani, T. Miyazaki and S. Yamamoto, "40-Gb/s optical 3R regenerator using electroabsorption modulators for optical networks," J. Lightw. Technol., vol. 20, no. 2, pp. 195-200, Feb. 2002.

J. K. Lucek and K. Smith, "All-optical signal regenerator," Opt. Lett., vol. 18, no. 15, pp. 1226-1228, Aug. 1993.

T. Sakamoto and K. Kikuchi, "160-Gb/s operation of nonlinear optical loop-mirror with an optical bias controller," IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 1058-1060, May 2005.

F. Zhang and J. W. Y. Lit, "Temperature and strain sensitivity measurements of high-birefringent polarization-maintaining fibers," Appl. Opt., vol. 32, no. 13, pp. 2213-2218, May 1993.

J. J. Carr, S. L. Saikkonen and D. H. Williams, "Refractive index measurements on single-mode fiber as functions of product parameters, tensile stress and temperature," Fiber Integr. Opt., vol. 9, no. 4, pp. 393-396, 1990.

A. Michie, J. Canning, K. Lyytikäinen, M. Åslund and J. Digweed, "Temperature independent highly birefringent photonic crystal fibre," Opt. Express, vol. 12, no. 21, pp. 5160-5165, Oct. 2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.