Abstract

A novel interferometric scheme for photonic analog-to-digital conversion is for the first time experimentally demonstrated at a real-time sample rate of 40 gigasamples/s. The scheme includes sampling as well as binary encoding, and the input signal in the experiment was a 1.25-GHz sinusoidal tone that was successfully digitized with a nominal resolution of 21 digital levels. Single-sample measurements yielded an effective number of bits (ENOB) of 2.6, which was limited by thermal detection noise while multisample averaged measurements resulted in an ENOB of 3.6 bits, mainly limited by phase drift. Apart from the experimental results, this paper covers an extensive theoretical analysis of the system, including calculations on the fundamental maximum bandwidth, the required optical power, the generated binary code, and its error robustness, as well as the impact of detection noise on the signal-to-noise ratio of the digitized signal. The major benefits of this interferometric scheme are that only one standard phase modulator is required and that the phase swing does not have to be larger than ±π to reach the full digital value space.

© 2006 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription