Abstract

Four wave mixing (FWM) is distinguished from other wavelength conversion techniques by its ability to simultaneously convert a number of input wavelength channels. In this case, optical signal-to-noise ratio (OSNR) is insufficient to describe the performance of the device as many effects are involved. A multiwavelength FWM model is used here to simulate a waveband converter (WBC). The numerical model predicts the waveform of the FWM product. Based on that output, the Q factor of the signal and the power penalty induced to the signal can be calculated to evaluate the performance of such a device. Meanwhile, an analytical model is used for the calculation of the signal power levels and the standard deviation of the fluctuation; hence, it describes the constituent effects-namely, the extinction ratio (ER) degradation, the OSNR degradation, the gain modulation (GM) related crosstalk, and interference. The model's validity is tested against the numerical results. To the best of the authors' knowledge, this is the first time that a numerical model and an analytical model are used to systematically investigate a WBC and to identify the specific effects and derive the design rules. These rules are tested in the experiment. Finally, a tunable WBC (TWBC) based on the dual-pump configuration is described and implemented experimentally.

© 2006 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription