Abstract

Crosstalk in an analog polarization modulation (PolM) system is studied analytically and experimentally. It is shown capable of producing dramatically lower crosstalk levels than intensity modulation (IM) at higher modulation frequencies (greater than 1 GHz) for a system with 200 GHz channel spacing. Calculations based on the developed analytical model show excellent agreement with experimental results and allow us to determine the necessary launch conditions for low-crosstalk transmission in a polarization modulation link.

© 2006 IEEE

PDF Article

References

  • View by:
  • |

  1. M. R. Phillips and D. M. Ott, "Crosstalk due to optical fiber nonlinearities in WDM CATV lightwave systems," J. Lightw. Technol., vol. 17, no. 10, pp. 1782-1792, Oct. 1999.
  2. K. Inoue, "Experimental study on channel crosstalk due to fiber four-wave mixing around the zero-dispersion wavelength," J. Lightw. Technol., vol. 12, no. 6, pp. 1023-1028, Jun. 1994.
  3. E. E. Funk, A. L. Campillo and D. A. Tulchinsky, "Nonlinear distortion and crosstalk in microwave fiber-radio links," in Proc. IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, Seattle, WA, Jun. 2002, pp. 1691-1693.
  4. Y. W. Song, Z. Pan, Y. Arieli, S. M. R. Motaghian, S. A. Havstad and A. E. Willner, "Enhanced suppression of nonlinearity-induced crosstalk in WDM systems using optical polarization shift keying," in Proc. Conf. Lasers and Electro-Optics/Quantum Electronics and Laser Science (CLEO/QELS) Tech. Dig., Baltimore, MD, 2003,Paper CThQ2,. pp. 1731-1733.
  5. A. Carena, V. Curri, R. Gaudino, N. Greco, P. Poggiolini and S. Benedetto, "Polarization modulation in ultra-long haul transmission systems: A promising alternative to intensity modulation," in Proc. Eur. Conf. Optical Communication (ECOC), Madrid, Spain, 1998, pp. 429-430.
  6. S. Betti, G. De Marchis and E. Iannone, "Polarization modulated direct detection optical transmission systems," J. Lightw. Technol., vol. 10, no. 12, pp. 1985-1997, Dec. 1992.
  7. S. Benedetto, R. Guadino and P. Poggiolini, "Direct detection of optical digital transmission based on polarization shift keying modulation," IEEE J. Sel. Areas Commun., vol. 13, no. 3, pp. 531-542, Apr. 1995.
  8. A. L. Campillo, F. Bucholtz, J. L. Dexter and K. J. Williams, "Crosstalk reduction in wavelength division multiplexed analog links through polarization modulation," presented at the Conf. Lasers and Electro-Optics/Int. Quantum Electronics Conf. (CLEO/IQEC) and Photonic Applications, Systems and Technologies (PhAST) Tech. Dig., San Francisco, CA, CWQ3, 2004.
  9. C. Conti, D. Beltrame, G. De Marchis and M. Zitelli, "Cross phase modulation in polarization shift-keying lightwave systems," Appl. Opt., vol. 43, no. 1, pp. 149-152, Jan. 2004.
  10. P. D. Maker and R. W. Terhune, "Study of optical effects due to an induced polarization third order in the electric field strength," Phys. Rev., vol. 137, no. 3A, pp. A801-A818, Feb. 1965.
  11. R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers," IEEE J. Quantum Electron., vol. QE-15, no. 10, pp. 1157-1160, Oct. 1979.
  12. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. San Diego, CA: Academic, 2001.
  13. Z. Wang, A. Li, C. J. Mahon, G. Jacobsen and E. Bødtker, "Performance limitations imposed by stimulated Raman scattering in optical WDM SCM video distribution systems," IEEE Photon. Technol. Lett., vol. 7, no. 12, pp. 1492-1494, Dec. 1995.
  14. Z. Wang, E. Bødtker and G. Jacobsen, "Effects of cross-phase modulation in wavelength-multiplexed SCM video transmission systems," Electron. Lett., vol. 31, no. 18, pp. 1591-1592, Aug. 1995.
  15. A. V. T. Cartaxo, B. Wedding and W. Idler, "Influence of fiber nonlinearity on the phase noise to intensity noise conversion in fiber transmission: Theoretical and experimental analysis," J. Lightw. Technol., vol. 16, no. 7, pp. 1187-1194, Jul. 1998.
  16. J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid and P. Ghanipour, "40 GHz electro-optic polarization modulator for fiber optic communications systems," in Proc. SPIE, vol. 5577, Ottawa, ON, Canada, 2004, pp. 133-143.

Other (16)

M. R. Phillips and D. M. Ott, "Crosstalk due to optical fiber nonlinearities in WDM CATV lightwave systems," J. Lightw. Technol., vol. 17, no. 10, pp. 1782-1792, Oct. 1999.

K. Inoue, "Experimental study on channel crosstalk due to fiber four-wave mixing around the zero-dispersion wavelength," J. Lightw. Technol., vol. 12, no. 6, pp. 1023-1028, Jun. 1994.

E. E. Funk, A. L. Campillo and D. A. Tulchinsky, "Nonlinear distortion and crosstalk in microwave fiber-radio links," in Proc. IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, Seattle, WA, Jun. 2002, pp. 1691-1693.

Y. W. Song, Z. Pan, Y. Arieli, S. M. R. Motaghian, S. A. Havstad and A. E. Willner, "Enhanced suppression of nonlinearity-induced crosstalk in WDM systems using optical polarization shift keying," in Proc. Conf. Lasers and Electro-Optics/Quantum Electronics and Laser Science (CLEO/QELS) Tech. Dig., Baltimore, MD, 2003,Paper CThQ2,. pp. 1731-1733.

A. Carena, V. Curri, R. Gaudino, N. Greco, P. Poggiolini and S. Benedetto, "Polarization modulation in ultra-long haul transmission systems: A promising alternative to intensity modulation," in Proc. Eur. Conf. Optical Communication (ECOC), Madrid, Spain, 1998, pp. 429-430.

S. Betti, G. De Marchis and E. Iannone, "Polarization modulated direct detection optical transmission systems," J. Lightw. Technol., vol. 10, no. 12, pp. 1985-1997, Dec. 1992.

S. Benedetto, R. Guadino and P. Poggiolini, "Direct detection of optical digital transmission based on polarization shift keying modulation," IEEE J. Sel. Areas Commun., vol. 13, no. 3, pp. 531-542, Apr. 1995.

A. L. Campillo, F. Bucholtz, J. L. Dexter and K. J. Williams, "Crosstalk reduction in wavelength division multiplexed analog links through polarization modulation," presented at the Conf. Lasers and Electro-Optics/Int. Quantum Electronics Conf. (CLEO/IQEC) and Photonic Applications, Systems and Technologies (PhAST) Tech. Dig., San Francisco, CA, CWQ3, 2004.

C. Conti, D. Beltrame, G. De Marchis and M. Zitelli, "Cross phase modulation in polarization shift-keying lightwave systems," Appl. Opt., vol. 43, no. 1, pp. 149-152, Jan. 2004.

P. D. Maker and R. W. Terhune, "Study of optical effects due to an induced polarization third order in the electric field strength," Phys. Rev., vol. 137, no. 3A, pp. A801-A818, Feb. 1965.

R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers," IEEE J. Quantum Electron., vol. QE-15, no. 10, pp. 1157-1160, Oct. 1979.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. San Diego, CA: Academic, 2001.

Z. Wang, A. Li, C. J. Mahon, G. Jacobsen and E. Bødtker, "Performance limitations imposed by stimulated Raman scattering in optical WDM SCM video distribution systems," IEEE Photon. Technol. Lett., vol. 7, no. 12, pp. 1492-1494, Dec. 1995.

Z. Wang, E. Bødtker and G. Jacobsen, "Effects of cross-phase modulation in wavelength-multiplexed SCM video transmission systems," Electron. Lett., vol. 31, no. 18, pp. 1591-1592, Aug. 1995.

A. V. T. Cartaxo, B. Wedding and W. Idler, "Influence of fiber nonlinearity on the phase noise to intensity noise conversion in fiber transmission: Theoretical and experimental analysis," J. Lightw. Technol., vol. 16, no. 7, pp. 1187-1194, Jul. 1998.

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid and P. Ghanipour, "40 GHz electro-optic polarization modulator for fiber optic communications systems," in Proc. SPIE, vol. 5577, Ottawa, ON, Canada, 2004, pp. 133-143.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.