Abstract

The unsteady-state thermal conduction processes in triangular-profile (TP) optical fibers, which exhibited zero chromatic dispersion near 1.55 µm, were studied theoretically with the explicit finite-difference method (FDM). It was estimated that these fibers would exhibit a high-temperature optical absorption on the basis of the high-temperature loss-increase mechanism proposed for step-index (SI) optical fibers. The core-center temperature of the TP fibers changed suddenly and reached over 7×10<sup>5</sup> K when a 1.064-µm laser power of 1 W was inputted into the core layer heated at 2608 K. This rapid heating of the core initiated the"fiber fuse"phenomenon. The propagation rates of the fiber fuse, estimated at 1.064 µm, were in fairly good agreement with the experimentally determined values. It was found that the threshold powers for initiating the fiber fuse are linearly proportional to the roots of the effective core areas of both the SI and the TP optical fibers. This coincides the experimental result reported by Seo et al.

© 2006 IEEE

PDF Article

References

  • View by:
  • |

  1. Y. Aoki, "Fiber Raman amplifier properties for applications to long-distance optical communications", Opt. Quantum Electron., vol. 21, pp. S89-S104, 1989.
  2. P. B. Hansen, L. Eskildsen, S. G. Grubb, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani and D. J. DiGiovanni, "Capacity upgrades of transmission systems by Raman amplification", IEEE Photon. Technol. Lett., vol. 9, no. 2, pp. 262-264, Feb. 1997.
  3. H. Suzuki, J. Kani, H. Masuda, N. Tachio, K. Iwatsuki, Y. Tada and M. Sumida, "1-Tb/s (100 × 10 Gb/s) super-dense WDM transmission with 25-GHz channel spacing in the zero-dispersion region employing distributed Raman amplification technology", IEEE Photon. Technol. Lett., vol. 12, no. 7, pp. 903-905, Jul. 2000.
  4. S. Namiki and Y. Emori, "Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes", IEEE J. Sel. Topics Quantum Electron., vol. 7, no. 1, pp. 3-16, Jan./Feb. 2001.
  5. R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides", Appl. Phys. Lett., vol. 22, no. 6, pp. 276-278, Mar. 1973.
  6. F. L. Galeener, J. C. Mikkelsen Jr., R. H. Geils and W. J. Mosby, "The relative Raman cross sections of vitreous SiO2, GeO2, B2O3 and P2O5", Appl. Phys. Lett., vol. 32, no. 1, pp. 34-36, Jan. 1978.
  7. R. Kashyap and K. J. Blow, "Observation of catastrophic self-propelled self-focusing in optical fibres", Electron. Lett., vol. 24, no. 1, pp. 47-49, Jan. 1988.
  8. R. Kashyap, "Self-propelled self-focusing damage in optical fibres", in Proc. Int. Conf. Lasers, Lake Tahoe, NV, Dec. 1987, pp. 859-866.
  9. T. J. Driscoll, J. M. Calo and N. M. Lawandy, "Explaining the optical fuse", Opt. Lett., vol. 16, no. 13, pp. 1046-1048, Jul. 1991.
  10. D. P. Hand and P. S. J. Russell, "Solitary thermal shock waves and optical damage in optical fibers: The fiber fuse", Opt. Lett., vol. 13, no. 9, pp. 767-769, Sep. 1988.
  11. D. P. Hand and P. S. J. Russell, "Soliton-like thermal shock-waves in optical fibers: Origin of periodic damage tracks", in Proc. Eur. Conf. Optical Communication, Brighton, U.K.,Sep. 1988, pp. 111-114.
  12. D. D. Davis, S. C. Mettler and D. J. DiGiovanni, "Experimental data on the fiber fuse", in Proc. SPIE, vol. 2714, Boulder, CO, Jun. 1995, pp. 202-210.
  13. D. D. Davis, S. C. Mettler and D. J. DiGiovanni, "A comparative evaluation of fiber fuse models", in Proc. SPIE, vol. 2966, Boulder, CO, Jun. 1996, pp. 592-606.
  14. R. Kashyap, A. Sayles and G. F. Cornwell, "Heat flow modeling and visualization of catastrophic self-propagating damage in singlemode optical fibres at low powers", in Proc. SPIE, vol. 2966, Boulder, CO, Jun. 1996, pp. 586-591.
  15. E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinskii, M. F. Churbanov and G. E. Snopatin, "Catastrophic destruction of optical fibres of various composition caused by laser radiation", Quantum Electron., vol. 32, no. 6, pp. 476-478, 2002.
  16. R. Kashyap, "High average power effects in optical fibres and devices", Proc. SPIE, vol. 4940, pp. 108-117, Jun. 2003.
  17. R. M. Atkins, P. G. Simpkins and A. D. Yabon, "Track of a fiber fuse: A Rayleigh instability in optical waveguides", Opt. Lett., vol. 28, no. 12, pp. 974-976, Jun. 2003.
  18. S. I. Yakovlenko, "Plasma behind the front of a damage wave and the mechanism of laser-induced production of a chain of caverns in an optical fibre", Quantum Electron., vol. 34, no. 8, pp. 765-770, 2004.
  19. Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi and R. Nagase, "Fiber fuse phenomenon in step-index single-mode optical fibers", IEEE J. Quantum Electron., vol. 40, no. 8, pp. 1113-1121, Aug. 2004.
  20. M. A. Saifi, S. J. Jang, L. G. Cohen and J. Stone, "Triangular-profile single-mode fiber", Opt. Lett., vol. 7, no. 1, pp. 43-45, Jan. 1982.
  21. B. J. Ainslie, K. J. Beales, D. M. Cooper, C. R. Day and J. D. Rush, "Monomode fibre with ultra-low loss and minimum dispersion at 1.55 µm", Electron. Lett., vol. 18, no. 19, pp. 842-844, 1982.
  22. K. Okamoto, Fundamentals of Optical Waveguides, San Diego, CA: Academic, 2000, ch. 5.
  23. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. New York: Academic, 2001, ch. 2.
  24. K. Okamoto, Fundamentals of Optical Waveguides, San Diego, CA: Academic, 2000, ch. 6.
  25. Y. Namihira, "Relationship between nonlinear effective area and modefield diameter for dispersion shifted fibres", Electron. Lett., vol. 30, no. 3, pp. 262-264, Feb. 1994.
  26. G. G. Macfarlane and V. Roberts, "Infrared absorption of silicon near the lattice edge", Phys. Rev., vol. 98, no. 6, pp. 1865-1866, Jun. 1955.
  27. G. G. Macfarlane, T. P. McLean, J. E. Quarrington and V. Roberts, "Fine structure in the absorption-edge spectrum of Si", Phys. Rev., vol. 111, no. 5, pp. 1245-1254, Sep. 1958.
  28. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. London: U.K.: Oxford Univ. Press, 1959, ch. 13.
  29. G. E. Forsythe and W. R. Wasow, Finite-Difference Methods for Partial Differential Equations, New York: Wiley, 1960, ch. 2.
  30. E. M. Dianov, V. M. Mashinsky, V. A. Myzina, Y. S. Sidorin, A. M. Streltsov and A. V. Chickolini, "Change of refractive index profile in the process of laser-induced fibre damage", Sov. Lightw. Commun., vol. 2, pp. 293-299, 1992.
  31. N. Shibata and T. Edahiro, "Refractive-index dispersion for GeO2, P2O5 and B2O3 -doped silica glasses in optical fibers", Trans. Inst. Electron. Commun. Eng. Jpn., vol. E65, no. 3, pp. 166-172, 1982.
  32. K. Seo, N. Nishimura, M. Shiino, R. Yuguchi and H. Sasaki, "Examination of threshold power for high-power problems in optical fiber", in Proc. Int. Laser Safety Conf., Jacksonville, FL, Mar. 2003, pp. 298-302.
  33. T. Tsuzaki, M. Kakui, M. Hirano, M. Onishi and M. Nishimura, "Broadband discrete fiber Raman amplifier with high differential gain operating over 1.65 µm -band", in Proc. Optical Fiber Communication Conf., Anaheim, CA, 2001, pp. MA3-1-MA3-3.
  34. M. Hirano, A. Tada, T. Kato, M. Onishi, Y. Makio and M. Nishimura, "Dispersion compensating fiber over 140 nm-bandwidth", in Proc. 27th Eur. Conf. Optical Communication, Amsterdam, The Netherlands, 2001,Paper Th.M.1.4,. pp. 494-495.
  35. T. Miyamoto, T. Tsuzaki, T. Okuno, M. Kakui, M. Hirano, M. Onishi and M. Shigematsu, "Raman amplification over 100 nm-bandwidth with dispersion and dispersion slope compensation for conventional single mode fiber", in Proc. Optical Fiber Communication Conf., Anaheim, CA, 2002,Paper TuJ7,. pp. 66-68.
  36. S. S.-H. Yam, F.-T. An, E. S.-T. Hu, M. E. Marhic, T. Sakamoto, L. G. Kazovsky and Y. Asakawa, "Gain-clamped S-band discrete Raman amplifier", in Proc. Optical Fiber Communication Conf., Anaheim, CA, 2002,Paper ThB4,. pp. 385-387.
  37. T. Kotanigawa, T. Matsuda and A. Naka, "Unstable Raman amplification due to Brillouin scattering and its suppression for 40 Gb/s WDM transmission", presented at the Optical Fiber Communication Conf., Los Angeles, CA, Paper WB2, 2004.
  38. M. Onishi, "New nonlinear fibers with application to amplifiers", presented at the Optical Fiber Communication Conf., Los Angeles, CA, Paper TuC3, 2004.

Other (38)

Y. Aoki, "Fiber Raman amplifier properties for applications to long-distance optical communications", Opt. Quantum Electron., vol. 21, pp. S89-S104, 1989.

P. B. Hansen, L. Eskildsen, S. G. Grubb, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani and D. J. DiGiovanni, "Capacity upgrades of transmission systems by Raman amplification", IEEE Photon. Technol. Lett., vol. 9, no. 2, pp. 262-264, Feb. 1997.

H. Suzuki, J. Kani, H. Masuda, N. Tachio, K. Iwatsuki, Y. Tada and M. Sumida, "1-Tb/s (100 × 10 Gb/s) super-dense WDM transmission with 25-GHz channel spacing in the zero-dispersion region employing distributed Raman amplification technology", IEEE Photon. Technol. Lett., vol. 12, no. 7, pp. 903-905, Jul. 2000.

S. Namiki and Y. Emori, "Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes", IEEE J. Sel. Topics Quantum Electron., vol. 7, no. 1, pp. 3-16, Jan./Feb. 2001.

R. H. Stolen and E. P. Ippen, "Raman gain in glass optical waveguides", Appl. Phys. Lett., vol. 22, no. 6, pp. 276-278, Mar. 1973.

F. L. Galeener, J. C. Mikkelsen Jr., R. H. Geils and W. J. Mosby, "The relative Raman cross sections of vitreous SiO2, GeO2, B2O3 and P2O5", Appl. Phys. Lett., vol. 32, no. 1, pp. 34-36, Jan. 1978.

R. Kashyap and K. J. Blow, "Observation of catastrophic self-propelled self-focusing in optical fibres", Electron. Lett., vol. 24, no. 1, pp. 47-49, Jan. 1988.

R. Kashyap, "Self-propelled self-focusing damage in optical fibres", in Proc. Int. Conf. Lasers, Lake Tahoe, NV, Dec. 1987, pp. 859-866.

T. J. Driscoll, J. M. Calo and N. M. Lawandy, "Explaining the optical fuse", Opt. Lett., vol. 16, no. 13, pp. 1046-1048, Jul. 1991.

D. P. Hand and P. S. J. Russell, "Solitary thermal shock waves and optical damage in optical fibers: The fiber fuse", Opt. Lett., vol. 13, no. 9, pp. 767-769, Sep. 1988.

D. P. Hand and P. S. J. Russell, "Soliton-like thermal shock-waves in optical fibers: Origin of periodic damage tracks", in Proc. Eur. Conf. Optical Communication, Brighton, U.K.,Sep. 1988, pp. 111-114.

D. D. Davis, S. C. Mettler and D. J. DiGiovanni, "Experimental data on the fiber fuse", in Proc. SPIE, vol. 2714, Boulder, CO, Jun. 1995, pp. 202-210.

D. D. Davis, S. C. Mettler and D. J. DiGiovanni, "A comparative evaluation of fiber fuse models", in Proc. SPIE, vol. 2966, Boulder, CO, Jun. 1996, pp. 592-606.

R. Kashyap, A. Sayles and G. F. Cornwell, "Heat flow modeling and visualization of catastrophic self-propagating damage in singlemode optical fibres at low powers", in Proc. SPIE, vol. 2966, Boulder, CO, Jun. 1996, pp. 586-591.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinskii, M. F. Churbanov and G. E. Snopatin, "Catastrophic destruction of optical fibres of various composition caused by laser radiation", Quantum Electron., vol. 32, no. 6, pp. 476-478, 2002.

R. Kashyap, "High average power effects in optical fibres and devices", Proc. SPIE, vol. 4940, pp. 108-117, Jun. 2003.

R. M. Atkins, P. G. Simpkins and A. D. Yabon, "Track of a fiber fuse: A Rayleigh instability in optical waveguides", Opt. Lett., vol. 28, no. 12, pp. 974-976, Jun. 2003.

S. I. Yakovlenko, "Plasma behind the front of a damage wave and the mechanism of laser-induced production of a chain of caverns in an optical fibre", Quantum Electron., vol. 34, no. 8, pp. 765-770, 2004.

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi and R. Nagase, "Fiber fuse phenomenon in step-index single-mode optical fibers", IEEE J. Quantum Electron., vol. 40, no. 8, pp. 1113-1121, Aug. 2004.

M. A. Saifi, S. J. Jang, L. G. Cohen and J. Stone, "Triangular-profile single-mode fiber", Opt. Lett., vol. 7, no. 1, pp. 43-45, Jan. 1982.

B. J. Ainslie, K. J. Beales, D. M. Cooper, C. R. Day and J. D. Rush, "Monomode fibre with ultra-low loss and minimum dispersion at 1.55 µm", Electron. Lett., vol. 18, no. 19, pp. 842-844, 1982.

K. Okamoto, Fundamentals of Optical Waveguides, San Diego, CA: Academic, 2000, ch. 5.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. New York: Academic, 2001, ch. 2.

K. Okamoto, Fundamentals of Optical Waveguides, San Diego, CA: Academic, 2000, ch. 6.

Y. Namihira, "Relationship between nonlinear effective area and modefield diameter for dispersion shifted fibres", Electron. Lett., vol. 30, no. 3, pp. 262-264, Feb. 1994.

G. G. Macfarlane and V. Roberts, "Infrared absorption of silicon near the lattice edge", Phys. Rev., vol. 98, no. 6, pp. 1865-1866, Jun. 1955.

G. G. Macfarlane, T. P. McLean, J. E. Quarrington and V. Roberts, "Fine structure in the absorption-edge spectrum of Si", Phys. Rev., vol. 111, no. 5, pp. 1245-1254, Sep. 1958.

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. London: U.K.: Oxford Univ. Press, 1959, ch. 13.

G. E. Forsythe and W. R. Wasow, Finite-Difference Methods for Partial Differential Equations, New York: Wiley, 1960, ch. 2.

E. M. Dianov, V. M. Mashinsky, V. A. Myzina, Y. S. Sidorin, A. M. Streltsov and A. V. Chickolini, "Change of refractive index profile in the process of laser-induced fibre damage", Sov. Lightw. Commun., vol. 2, pp. 293-299, 1992.

N. Shibata and T. Edahiro, "Refractive-index dispersion for GeO2, P2O5 and B2O3 -doped silica glasses in optical fibers", Trans. Inst. Electron. Commun. Eng. Jpn., vol. E65, no. 3, pp. 166-172, 1982.

K. Seo, N. Nishimura, M. Shiino, R. Yuguchi and H. Sasaki, "Examination of threshold power for high-power problems in optical fiber", in Proc. Int. Laser Safety Conf., Jacksonville, FL, Mar. 2003, pp. 298-302.

T. Tsuzaki, M. Kakui, M. Hirano, M. Onishi and M. Nishimura, "Broadband discrete fiber Raman amplifier with high differential gain operating over 1.65 µm -band", in Proc. Optical Fiber Communication Conf., Anaheim, CA, 2001, pp. MA3-1-MA3-3.

M. Hirano, A. Tada, T. Kato, M. Onishi, Y. Makio and M. Nishimura, "Dispersion compensating fiber over 140 nm-bandwidth", in Proc. 27th Eur. Conf. Optical Communication, Amsterdam, The Netherlands, 2001,Paper Th.M.1.4,. pp. 494-495.

T. Miyamoto, T. Tsuzaki, T. Okuno, M. Kakui, M. Hirano, M. Onishi and M. Shigematsu, "Raman amplification over 100 nm-bandwidth with dispersion and dispersion slope compensation for conventional single mode fiber", in Proc. Optical Fiber Communication Conf., Anaheim, CA, 2002,Paper TuJ7,. pp. 66-68.

S. S.-H. Yam, F.-T. An, E. S.-T. Hu, M. E. Marhic, T. Sakamoto, L. G. Kazovsky and Y. Asakawa, "Gain-clamped S-band discrete Raman amplifier", in Proc. Optical Fiber Communication Conf., Anaheim, CA, 2002,Paper ThB4,. pp. 385-387.

T. Kotanigawa, T. Matsuda and A. Naka, "Unstable Raman amplification due to Brillouin scattering and its suppression for 40 Gb/s WDM transmission", presented at the Optical Fiber Communication Conf., Los Angeles, CA, Paper WB2, 2004.

M. Onishi, "New nonlinear fibers with application to amplifiers", presented at the Optical Fiber Communication Conf., Los Angeles, CA, Paper TuC3, 2004.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.