Abstract

A highly efficient and high-power Raman fiber laser was developed based on the use of broadband fiber Bragg gratings (FBGs) as optical couplers. The broadening of the Stokes signal is analyzed in both cases where the laser emission is restricted or not by the FBGs bandwidth. The use of broadband FBGs with minimized cladding-mode losses allows us to overcome the problem of power leakage outside the laser cavity through the input coupler. It is shown that by carefully tailoring the intracavity spectral losses and the FBGs losses, lasing efficiencies approaching the quantum limit can be obtained. In fact, 7.8 W of Stokes power with a conversion efficiency of 93.6% has been obtained.

© 2006 IEEE

PDF Article

References

  • View by:
  • |

  1. S. A. Skubchenko, M. Y. Vyatkin, D. V. Gapontsev, "High-power CW linearly-polarized all-fiber Raman laser," IEEE Photon. Technol. Lett. 16, 1014-1016 (2004).
  2. M. Rini, I. Cristiani, V. Degiorgio, A. S. Kurkov, V. M. Paramonov, "Experimental and numerical optimization of a fiber Raman laser," Opt. Commun. 203, 139-144 (2002).
  3. E. M. Dianov, A. M. Prokhorov, "Medium-power CW Raman fiber lasers," IEEE J. Sel. Topics Quantum Electron. 6, 1022-1028 (2000).
  4. P. Suret, S. Randoux, "Influence of spectral broadening on steady characteristics of Raman fiber lasers: From experiments to questions about validity of usual models," Opt. Commun. 237, 201-212 (2004).
  5. M. Krause, S. Cierullies, H. Renner, "Stabilizing effect of line broadening in Raman fiber lasers," Opt. Commun. 227, 355-361 (2003).
  6. J.-C. Bouteiller, "Spectral modeling of Raman fiber lasers," IEEE Photon. Technol. Lett. 15, 1698-1700 (2003).
  7. J. AuYeung, A. Yariv, "Theory of CW Raman oscillation in optical fibers," J. Opt. Soc. Amer. 69, 803-807 (1979).
  8. Y. Zhao, S. D. Jackson, "Highly efficient first order Raman fibre lasers using very short Ge-doped silica fibres," Opt. Commun. 253, 172-176 (2005).
  9. Z. Xiong, N. Moore, Z. G. Li, G. C. Lim, "10-W Raman fiber lasers at 1248 nm using phosphosilicate fibers," J. Lightw. Technol. 21, 2377-2381 (2003).
  10. E. M. Dianov, "Raman fiber lasers based on heavily $\hbox{GeO}_{2}$-doped fibers," Quantum Electron. 35, 435-441 (2005).
  11. V. I. Karpov, W. R. L. Clements, E. M. Dianov, S. B. Papernyi, "High-power 1.48 $\mu\hbox{m}$ phosphorosilicate-fiber-based laser pumped by laser diodes," Can. J. Phys. 78, 407-413 (2000).
  12. I. A. Bufetov, "Highly efficient one- and two-cascade Raman lasers based on phosphosilicate fibers," Laser Phys. 13, 234-239 (2003).
  13. O. N. Egorova, A. S. Kurkov, V. M. Paramonov, E. M. Dianov, "Effect of the spectral broadening of the first Stokes component on the efficiency of a two-stage Raman converter," Quantum Electron. 35, 335-338 (2005).
  14. S. Huang, Y. Feng, A. Shirakawa, K.-I. Ueda, "Generation of 10.5 W, 1178 nm laser based on phosphosilicate Raman fiber laser," Jpn. J. Appl. Phys. 42, L1439-L1441 (2003).
  15. E. Bélanger, D. Faucher, M. Bernier, B. Déry, R. Vallée, "High power and highly efficient Raman fiber laser based on broadband fiber Bragg gratings," Proc. Photon. North (2006) pp. 63430Y.
  16. Y. Wang, H. Po, "Characteristics of fibre Bragg gratings and influences on high-power Raman fibre lasers," Meas. Sci. Technol. 14, 883-891 (2003).
  17. J. Bromage, K. Rottwitt, M. E. Lines, "A method to predict the Raman gain spectra of germanosilicate with arbitrary index profiles," IEEE Photon. Technol. Lett 14, 24-26 (2002).

Can. J. Phys. (1)

V. I. Karpov, W. R. L. Clements, E. M. Dianov, S. B. Papernyi, "High-power 1.48 $\mu\hbox{m}$ phosphorosilicate-fiber-based laser pumped by laser diodes," Can. J. Phys. 78, 407-413 (2000).

IEEE J. Sel. Topics Quantum Electron. (1)

E. M. Dianov, A. M. Prokhorov, "Medium-power CW Raman fiber lasers," IEEE J. Sel. Topics Quantum Electron. 6, 1022-1028 (2000).

IEEE Photon. Technol. Lett (1)

J. Bromage, K. Rottwitt, M. E. Lines, "A method to predict the Raman gain spectra of germanosilicate with arbitrary index profiles," IEEE Photon. Technol. Lett 14, 24-26 (2002).

IEEE Photon. Technol. Lett. (2)

S. A. Skubchenko, M. Y. Vyatkin, D. V. Gapontsev, "High-power CW linearly-polarized all-fiber Raman laser," IEEE Photon. Technol. Lett. 16, 1014-1016 (2004).

J.-C. Bouteiller, "Spectral modeling of Raman fiber lasers," IEEE Photon. Technol. Lett. 15, 1698-1700 (2003).

J. Lightw. Technol. (1)

Z. Xiong, N. Moore, Z. G. Li, G. C. Lim, "10-W Raman fiber lasers at 1248 nm using phosphosilicate fibers," J. Lightw. Technol. 21, 2377-2381 (2003).

J. Opt. Soc. Amer. (1)

J. AuYeung, A. Yariv, "Theory of CW Raman oscillation in optical fibers," J. Opt. Soc. Amer. 69, 803-807 (1979).

Jpn. J. Appl. Phys. (1)

S. Huang, Y. Feng, A. Shirakawa, K.-I. Ueda, "Generation of 10.5 W, 1178 nm laser based on phosphosilicate Raman fiber laser," Jpn. J. Appl. Phys. 42, L1439-L1441 (2003).

Laser Phys. (1)

I. A. Bufetov, "Highly efficient one- and two-cascade Raman lasers based on phosphosilicate fibers," Laser Phys. 13, 234-239 (2003).

Meas. Sci. Technol. (1)

Y. Wang, H. Po, "Characteristics of fibre Bragg gratings and influences on high-power Raman fibre lasers," Meas. Sci. Technol. 14, 883-891 (2003).

Opt. Commun. (4)

Y. Zhao, S. D. Jackson, "Highly efficient first order Raman fibre lasers using very short Ge-doped silica fibres," Opt. Commun. 253, 172-176 (2005).

M. Rini, I. Cristiani, V. Degiorgio, A. S. Kurkov, V. M. Paramonov, "Experimental and numerical optimization of a fiber Raman laser," Opt. Commun. 203, 139-144 (2002).

P. Suret, S. Randoux, "Influence of spectral broadening on steady characteristics of Raman fiber lasers: From experiments to questions about validity of usual models," Opt. Commun. 237, 201-212 (2004).

M. Krause, S. Cierullies, H. Renner, "Stabilizing effect of line broadening in Raman fiber lasers," Opt. Commun. 227, 355-361 (2003).

Quantum Electron. (2)

E. M. Dianov, "Raman fiber lasers based on heavily $\hbox{GeO}_{2}$-doped fibers," Quantum Electron. 35, 435-441 (2005).

O. N. Egorova, A. S. Kurkov, V. M. Paramonov, E. M. Dianov, "Effect of the spectral broadening of the first Stokes component on the efficiency of a two-stage Raman converter," Quantum Electron. 35, 335-338 (2005).

Other (1)

E. Bélanger, D. Faucher, M. Bernier, B. Déry, R. Vallée, "High power and highly efficient Raman fiber laser based on broadband fiber Bragg gratings," Proc. Photon. North (2006) pp. 63430Y.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.