Abstract

A laboratory-simulated free-space optical link under various turbulence levels is implemented to propose and experimentally demonstrate the use of saturated optical amplifiers as a simple and efficient approach for suppression of scintillation due to atmospheric turbulence. The use of erbium-doped fiber amplifier (EDFA) or semiconductor optical amplifier (SOA) requires the received signal be coupled into a fiber. The system performance of receiver structures employing a saturated EDFA and a SOA (in saturation and conversion modes) are measured and compared to that of fiberless direct detection (DD). It is shown that in higher turbulence levels, where no data transmission can be achieved by DD, remarkable eye opening results when using saturated amplifiers.

© 2006 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription