Abstract

With recent successes of laboratory, inatmosphere, and space demonstrations of free-space optical communications, there is no doubt that the technology is ready for operational deployment. While these successes have shown that there are no laws of physics against such systems, their estimated system costs are still much too high for serious considerations. Two types of development can reduce the cost dramatically. The first is via the improvement of physical-link communication efficiency by an order of magnitude using photon-counting receivers for vacuum channels, system complexity, weight, and power for space systems can be greatly reduced. The second is through the use of coherent systems in links where clear-air turbulence impairs communication efficiency, and in multiple access applications where coherent processing can reduce the level of interference, significant reduction in system costs can be realized.

© 2006 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription