Abstract

Ten to 20 years from now, optical networks will have to carry vastly increased amounts of Internet traffic. Today's knowledge (2006) already points to ultimate technology limits in the physical layer, foretelling the end of the so-called “Optical Moore's Law.” Such an observation is discordant with the generic and optimistic view of a “virtually infinite” optical bandwidth combined with unlimited Internet-traffic growth. In order to meet long-term needs and challenges, therefore, basic research in wideband optical components and subsystems must be urgently revived today.

© 2006 IEEE

PDF Article

References

  • View by:
  • |

  1. E. Desurvire, "Optical telecommunications in 2025," Proc. 31st Eur. Conf. Opt. Commun. (2005).
  2. D. B. Keck, "Optical fiber spans 30 years," Lightwave 17, 78 (2000) www.corning.com/docs/opticalfiber/r3461.pdf.
  3. Telegeography Research and Primetrica Inc.2005 and 2006 Executive Summaries on “Global Internet Geography” www.telegeography.com (free resources).
  4. K. Amano, Y. Iwamoto, "Optical fiber submarine systems," J. Lightw. Technol. 8, 595 (1990).
  5. Data from KMI Research (2005) http://kmi.pennnet.com/press_display.cfm?ARTICLE_ID=225156.
  6. R. Mack, "Fiberoptics Technology: Markets Penetrated and Outlook," Proc. FiberFest Symp. (2005) http://www.nefc.com/pp_fiberfest2005/KMISlides_NJ.ppt.
  7. T. Mastrangelo, "PON leads an emerging FTTP equipment market," RHK Annual Market Forecast (2004).
  8. M. Kunigonis, "The reality of FTTH in the United States; Its inherent stimulus and the ‘bottom line’ results," Proc. 13th Convergence India Conf. (2005).
  9. P. E. Green, Wiley Survival Guides in Engineering and Science (Wiley, 2006).
  10. O. Leclerc, B. Lavigne, D. Chiaroni, E. Desurvire, Optical Fiber Telecommunications IV-A (Academic, 2002) pp. 732-783.
  11. P. S. Henry, R. A. Linke, A. H. Grauck, Optical Fiber Telecommunications II (Academic, 1988) pp. 781-831.
  12. E. Desurvire, Wiley Survival Guide in Global Telecommunications, Broadband Access, Optical Components an Networks, and Cryptography (Wiley, 2004) pp. 302-303.
  13. E. Desurvire, "Lightwave systems: The fifth generation," Scientific Amer. 266, 114 (1992).
  14. E. Desurvire, "Lightwave systems: The fifth generation," Pour la Science 60 (1992).
  15. I. Tuomi, The lives and death of Moore's law (, 2002).
  16. M. Dubash, Moore's Law is dead, says Gordon Moore .
  17. J. G. Proakis, Digital Communications (McGraw-Hill, 1983) pp. 231.
  18. S. Haykin, Digital Communications (Wiley, 1988) pp. 273.
  19. R. Nagarajan, "Large-scale photonic integrated circuits," IEEE J. Sel. Topics Quantum Electron. 11, 50 (2005).
  20. R. Nagarajan, "400 Gb/s (10 channel $\times$ 40 Gb/s) DWDM photonic integrated circuit," Electron. Lett. 41, 347-349 (2005).
  21. E. Desurvire, D. Bayart, B. Desthieux, S. Bigo, Erbium-Doped Fiber Amplifiers, Device and System Developments (Wiley, 2002).
  22. M. Yamada, "Overview of wideband optical fiber amplification technologies," NTT Tech. Rev. 2, 34 (2004) http://www.ntt.co.jp/tr/0412/files/ntr200412034.pdf.
  23. T. Sakamoto, A. Mori, H. Masuda, H. Ono, "Wideband rare-earth-doped fiber amplification technologies—Gain bandwidth expansion in the C and L bands," NTT Tech. Rev. 2, 38 (2004) http://www.ntt.co.jp/tr/0412/files/ntr200412038.pdf.
  24. S. Aozasa, T. Sakamoto, H. Ono, A. Mori, M. Yamada, "Wideband rare-earth-doped fiber amplification technologies—O-band and S-band amplification technologies," NTT Tech. Rev. 2, 44 (2004) http://www.ntt.co.jp/tr/0412/files/ntr200412044.pdf.
  25. A. Mori, H. Masuda, "Tellurite fiber Raman amplifiers," NTT Tech. Rev. 2, 51 (2004) http://www.ntt.co.jp/tr/0412/files/ntr200412051.pdf.
  26. D. Bayart, P. Baniel, A. Bergonzo, J. Y. Boniort, P. Bousselet, L. Gasca, D. Hamoir, F. Leplingard, A. Le Sauze, P. Nouchi, F. Roy, P. Sillard, "Broadband optical amplification over 17.7 THz range," Electron. Lett. 36, 1569 (2000).
  27. T. Akiyama, K. Kawagushi, M. Sugawara, M. Ekawa, H. Ebe, Y. Arakawa, "Quantum-dot semiconductor optical amplifiers," IEEE Leos Newslett. 20, 11 (2006).
  28. A. R. Grant, "Calculating the Raman pump distribution to achieve minimum gain ripple," IEEE J. Quantum Electron. 38, 1503 (2002).
  29. L. F. Mollenauer, A. R. Grant, P. V. Mamyshev, "Time-division multiplexing of pump wavelengths to achieve ultra-broadband, fmat, backward-pumped Raman gain," Opt. Lett. 27, 592 (2002).
  30. E. Desurvire, D. Bayart, B. Desthieux, S. Bigo, Erbium-Doped Fiber Amplifiers, Device and System Developments (Wiley, 2002) pp. 519-527.
  31. E. Desurvire, Wiley Survival Guide in Global Telecommunications, Broadband Access, Signaling Principles, Networks Protocols, and Wireless Systems (Wiley, 2004) pp. 82-85.
  32. E. Desurvire, D. Bayart, B. Desthieux, S. Bigo, Erbium-Doped Fiber Amplifiers, Device and System Developments (Wiley, 2002) pp. 216-218.
  33. E. Desurvire, D. Bayart, B. Desthieux, S. Bigo, Erbium-Doped Fiber Amplifiers, Device and System Developments (Wiley, 2002) pp. 222-228.
  34. J. M. Kahn, K.-P. Ho, "Spectral efficiency limits and modulation/detection techniques for DWDM systems," IEEE J. Sel. Topics Quantum Electron. 10, 259-272 (2004).
  35. P. P. Mitra, J. B. Stark, "Nonlinear limits to the information capacity of optical fiber communications," Nature 411, 1027-1030 (2001).
  36. J. M. Kahn, K.-P. Ho, "A bottleneck for optical fibres," Nature 411, 1007-1010 (2001).
  37. J. B. Stark, P. P. Mitra, A. Sengupta, "Information capacity for optical communication channels," Opt. Fiber Technol. 7, 275 (2001).
  38. E. Desurvire, D. Bayart, B. Desthieux, S. Bigo, Erbium-Doped Fiber Amplifiers, Device and System Developments (Wiley, 2002) pp. 218-222.
  39. E. Desurvire, "Quantum noise model for ultimate information capacity limits in long-haul WDM transmission," Electron. Lett. 38, 983 (2002).
  40. E. Desurvire, "A quantum model for optically-amplified nonlinear transmission systems," Opt. Fiber Technol. 8, 210 (2002).

Electron. Lett. (3)

R. Nagarajan, "400 Gb/s (10 channel $\times$ 40 Gb/s) DWDM photonic integrated circuit," Electron. Lett. 41, 347-349 (2005).

D. Bayart, P. Baniel, A. Bergonzo, J. Y. Boniort, P. Bousselet, L. Gasca, D. Hamoir, F. Leplingard, A. Le Sauze, P. Nouchi, F. Roy, P. Sillard, "Broadband optical amplification over 17.7 THz range," Electron. Lett. 36, 1569 (2000).

E. Desurvire, "Quantum noise model for ultimate information capacity limits in long-haul WDM transmission," Electron. Lett. 38, 983 (2002).

IEEE J. Quantum Electron. (1)

A. R. Grant, "Calculating the Raman pump distribution to achieve minimum gain ripple," IEEE J. Quantum Electron. 38, 1503 (2002).

IEEE J. Sel. Topics Quantum Electron. (2)

J. M. Kahn, K.-P. Ho, "Spectral efficiency limits and modulation/detection techniques for DWDM systems," IEEE J. Sel. Topics Quantum Electron. 10, 259-272 (2004).

R. Nagarajan, "Large-scale photonic integrated circuits," IEEE J. Sel. Topics Quantum Electron. 11, 50 (2005).

IEEE Leos Newslett. (1)

T. Akiyama, K. Kawagushi, M. Sugawara, M. Ekawa, H. Ebe, Y. Arakawa, "Quantum-dot semiconductor optical amplifiers," IEEE Leos Newslett. 20, 11 (2006).

J. Lightw. Technol. (1)

K. Amano, Y. Iwamoto, "Optical fiber submarine systems," J. Lightw. Technol. 8, 595 (1990).

Lightwave (1)

D. B. Keck, "Optical fiber spans 30 years," Lightwave 17, 78 (2000) www.corning.com/docs/opticalfiber/r3461.pdf.

Nature (2)

P. P. Mitra, J. B. Stark, "Nonlinear limits to the information capacity of optical fiber communications," Nature 411, 1027-1030 (2001).

J. M. Kahn, K.-P. Ho, "A bottleneck for optical fibres," Nature 411, 1007-1010 (2001).

NTT Tech. Rev. (4)

M. Yamada, "Overview of wideband optical fiber amplification technologies," NTT Tech. Rev. 2, 34 (2004) http://www.ntt.co.jp/tr/0412/files/ntr200412034.pdf.

T. Sakamoto, A. Mori, H. Masuda, H. Ono, "Wideband rare-earth-doped fiber amplification technologies—Gain bandwidth expansion in the C and L bands," NTT Tech. Rev. 2, 38 (2004) http://www.ntt.co.jp/tr/0412/files/ntr200412038.pdf.

S. Aozasa, T. Sakamoto, H. Ono, A. Mori, M. Yamada, "Wideband rare-earth-doped fiber amplification technologies—O-band and S-band amplification technologies," NTT Tech. Rev. 2, 44 (2004) http://www.ntt.co.jp/tr/0412/files/ntr200412044.pdf.

A. Mori, H. Masuda, "Tellurite fiber Raman amplifiers," NTT Tech. Rev. 2, 51 (2004) http://www.ntt.co.jp/tr/0412/files/ntr200412051.pdf.

Opt. Fiber Technol. (2)

J. B. Stark, P. P. Mitra, A. Sengupta, "Information capacity for optical communication channels," Opt. Fiber Technol. 7, 275 (2001).

E. Desurvire, "A quantum model for optically-amplified nonlinear transmission systems," Opt. Fiber Technol. 8, 210 (2002).

Opt. Lett. (1)

Pour la Science (1)

E. Desurvire, "Lightwave systems: The fifth generation," Pour la Science 60 (1992).

Scientific Amer. (1)

E. Desurvire, "Lightwave systems: The fifth generation," Scientific Amer. 266, 114 (1992).

Other (20)

E. Desurvire, "Optical telecommunications in 2025," Proc. 31st Eur. Conf. Opt. Commun. (2005).

Telegeography Research and Primetrica Inc.2005 and 2006 Executive Summaries on “Global Internet Geography” www.telegeography.com (free resources).

I. Tuomi, The lives and death of Moore's law (, 2002).

M. Dubash, Moore's Law is dead, says Gordon Moore .

J. G. Proakis, Digital Communications (McGraw-Hill, 1983) pp. 231.

S. Haykin, Digital Communications (Wiley, 1988) pp. 273.

Data from KMI Research (2005) http://kmi.pennnet.com/press_display.cfm?ARTICLE_ID=225156.

R. Mack, "Fiberoptics Technology: Markets Penetrated and Outlook," Proc. FiberFest Symp. (2005) http://www.nefc.com/pp_fiberfest2005/KMISlides_NJ.ppt.

T. Mastrangelo, "PON leads an emerging FTTP equipment market," RHK Annual Market Forecast (2004).

M. Kunigonis, "The reality of FTTH in the United States; Its inherent stimulus and the ‘bottom line’ results," Proc. 13th Convergence India Conf. (2005).

P. E. Green, Wiley Survival Guides in Engineering and Science (Wiley, 2006).

O. Leclerc, B. Lavigne, D. Chiaroni, E. Desurvire, Optical Fiber Telecommunications IV-A (Academic, 2002) pp. 732-783.

P. S. Henry, R. A. Linke, A. H. Grauck, Optical Fiber Telecommunications II (Academic, 1988) pp. 781-831.

E. Desurvire, Wiley Survival Guide in Global Telecommunications, Broadband Access, Optical Components an Networks, and Cryptography (Wiley, 2004) pp. 302-303.

E. Desurvire, D. Bayart, B. Desthieux, S. Bigo, Erbium-Doped Fiber Amplifiers, Device and System Developments (Wiley, 2002) pp. 218-222.

E. Desurvire, D. Bayart, B. Desthieux, S. Bigo, Erbium-Doped Fiber Amplifiers, Device and System Developments (Wiley, 2002) pp. 519-527.

E. Desurvire, Wiley Survival Guide in Global Telecommunications, Broadband Access, Signaling Principles, Networks Protocols, and Wireless Systems (Wiley, 2004) pp. 82-85.

E. Desurvire, D. Bayart, B. Desthieux, S. Bigo, Erbium-Doped Fiber Amplifiers, Device and System Developments (Wiley, 2002) pp. 216-218.

E. Desurvire, D. Bayart, B. Desthieux, S. Bigo, Erbium-Doped Fiber Amplifiers, Device and System Developments (Wiley, 2002) pp. 222-228.

E. Desurvire, D. Bayart, B. Desthieux, S. Bigo, Erbium-Doped Fiber Amplifiers, Device and System Developments (Wiley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.