Abstract

After dominating the electronics industry for decades, silicon is on the verge of becoming the material of choice for the photonics industry: the traditional stronghold of III–V semiconductors. Stimulated by a series of recent breakthroughs and propelled by increasing investments by governments and the private sector, silicon photonics is now the most active discipline within the field of integrated optics. This paper provides an overview of the state of the art in silicon photonics and outlines challenges that must be overcome before large-scale commercialization can occur. In particular, for realization of integration with CMOS very large scale integration (VLSI), silicon photonics must be compatible with the economics of silicon manufacturing and must operate within thermal constraints of VLSI chips. The impact of silicon photonics will reach beyond optical communication—its traditionally anticipated application. Silicon has excellent linear and nonlinear optical properties in the midwave infrared (IR) spectrum. These properties, along with silicon's excellent thermal conductivity and optical damage threshold, open up the possibility for a new class of mid-IR photonic devices.

© 2006 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription