Abstract

This paper discusses the design, fabrication, and test results of electromagnetically actuated two-dimensional (2-D) microelectromechanical systems (MEMS) optical switches. The switching element consists of a 20 μm x 500 μm x 1200 μm vertical micromirror, which is monolithically integrated with an actuation flap. The micromirror is made by anisotropic tetramethyl-ammonium-hydroxide wet etching with an optical insertion loss of about 0.2 dB. A maximum insertion loss of 2.1 dB has been experimentally demonstrated for a 10 x 10 2-D optical crossconnect switch. The actuation flap has double layers of spiral metal coils to generate a large actuation force with the permanent magnets placed at the bottom of the MEMS chip. The magnetic flux is created on the surface of a pair of opposite polarized magnets to precisely control the moving direction of the vertical mirror. The required voltage is less than 0.5 V, and the power consumption is about 3.5 mW for a switching element. Due to the center symmetric design and the stress-free characteristic of the micromirror, the temperature dependence loss is demonstrated to be as low as 0.05 dB. A switching time of 5 ms is achieved by applying the proper driving waveform.

© 2006 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. L. Lin, E. Goldstein, "Opportunities and challenges for MEMS in lightwave communications," IEEE J. Sel. Topics Quantum Electron. 8, 163-172 (2002).
  2. X. Ma, G. Kuo, "Optical switching technology comparison: Optical MEMS versus other technologies," IEEE Commun. Mag. 41, S16-S23 (2003).
  3. D. Bishop, C. Giles, S. Das, "The rise of optical switching," Sci. Amer. 284, 88-94 (2001).
  4. A. Neukermans, R. Ramaswami, "MEMS technology for optical networking applications," IEEE Commun. Mag. 39, 62-69 (2001).
  5. P. Dobbelaere, K. Falta, L. Fan, S. Gloeckner, S. Patra, "Digital MEMS for optical switching," IEEE Commun. Mag. 40, 88-95 (2002).
  6. L. Lin, E. Goldstein, R. Tkach, "On the expandability of the free-space micromachined optical cross connects," J. Lightw. Technol. 18, 482-489 (2000).
  7. C. Marxer, C. Thio, M. Gretillat, N. F. de Rooji, R. Battig, R. Anthamatten, B. Valk, P. Vogel, "Vertical mirrors fabricated by deep reactive ion etching for fiber-optic switching applications," J. Microelectromech. Syst. 6, 277-285 (1997).
  8. R. T. Chen, H. Nguyen, M. C. Wu, "A high-speed low-voltage stress-induced micromachined 2 x 2 optical switch," IEEE Photon. Technol. Lett. 11, 1396-1398 (1999).
  9. G. Su, H. Toshiyoshi, M. C. Wu, "Surface-micromachined 2-D optical scanners with high-performance single-crystalline silicon micromirrors," Photon. Technol. Lett. 13, 606-608 (2001).
  10. J. W. Judy, "Microelectromechanical Systems (MEMS)—Their design, fabrication, and broad range of application," J. Smart Mater. 10, 1115-1134 (2001).
  11. L. Houlet, P. Helin, T. Bourouina, G. Reyne, E. Gergam, H. Fujita, "Movable vertical mirror arrays for optical microswitch matrixes and their electromagnetic actuation," IEEE J. Sel. Topics Quantum Electron. 8, 58-63 (2002).
  12. Telcordia GR-1073-CORE pp. 4-11 (2001) Issue 1.
  13. G. D. J. Su, S. H. Hung, D. Jia, F. Jiang, "Serpentine spring corner design for MEMS optical switches with large mirror mass," Opt. Rev. 12, 339-344 (2005).
  14. E. M. Conway, V. J. Cunnane, "Electrochemical characterization of Si in tetra-methyl ammonium hydroxide (TMAH) and TMAH: Triton-X-100 solutions under white light effects," J. Micromech. Microeng. 12, 136-148 (2002).

2005 (1)

G. D. J. Su, S. H. Hung, D. Jia, F. Jiang, "Serpentine spring corner design for MEMS optical switches with large mirror mass," Opt. Rev. 12, 339-344 (2005).

2003 (1)

X. Ma, G. Kuo, "Optical switching technology comparison: Optical MEMS versus other technologies," IEEE Commun. Mag. 41, S16-S23 (2003).

2002 (4)

P. Dobbelaere, K. Falta, L. Fan, S. Gloeckner, S. Patra, "Digital MEMS for optical switching," IEEE Commun. Mag. 40, 88-95 (2002).

L. Lin, E. Goldstein, "Opportunities and challenges for MEMS in lightwave communications," IEEE J. Sel. Topics Quantum Electron. 8, 163-172 (2002).

E. M. Conway, V. J. Cunnane, "Electrochemical characterization of Si in tetra-methyl ammonium hydroxide (TMAH) and TMAH: Triton-X-100 solutions under white light effects," J. Micromech. Microeng. 12, 136-148 (2002).

L. Houlet, P. Helin, T. Bourouina, G. Reyne, E. Gergam, H. Fujita, "Movable vertical mirror arrays for optical microswitch matrixes and their electromagnetic actuation," IEEE J. Sel. Topics Quantum Electron. 8, 58-63 (2002).

2001 (4)

G. Su, H. Toshiyoshi, M. C. Wu, "Surface-micromachined 2-D optical scanners with high-performance single-crystalline silicon micromirrors," Photon. Technol. Lett. 13, 606-608 (2001).

J. W. Judy, "Microelectromechanical Systems (MEMS)—Their design, fabrication, and broad range of application," J. Smart Mater. 10, 1115-1134 (2001).

D. Bishop, C. Giles, S. Das, "The rise of optical switching," Sci. Amer. 284, 88-94 (2001).

A. Neukermans, R. Ramaswami, "MEMS technology for optical networking applications," IEEE Commun. Mag. 39, 62-69 (2001).

2000 (1)

L. Lin, E. Goldstein, R. Tkach, "On the expandability of the free-space micromachined optical cross connects," J. Lightw. Technol. 18, 482-489 (2000).

1999 (1)

R. T. Chen, H. Nguyen, M. C. Wu, "A high-speed low-voltage stress-induced micromachined 2 x 2 optical switch," IEEE Photon. Technol. Lett. 11, 1396-1398 (1999).

1997 (1)

C. Marxer, C. Thio, M. Gretillat, N. F. de Rooji, R. Battig, R. Anthamatten, B. Valk, P. Vogel, "Vertical mirrors fabricated by deep reactive ion etching for fiber-optic switching applications," J. Microelectromech. Syst. 6, 277-285 (1997).

IEEE Commun. Mag. (3)

A. Neukermans, R. Ramaswami, "MEMS technology for optical networking applications," IEEE Commun. Mag. 39, 62-69 (2001).

P. Dobbelaere, K. Falta, L. Fan, S. Gloeckner, S. Patra, "Digital MEMS for optical switching," IEEE Commun. Mag. 40, 88-95 (2002).

X. Ma, G. Kuo, "Optical switching technology comparison: Optical MEMS versus other technologies," IEEE Commun. Mag. 41, S16-S23 (2003).

IEEE J. Sel. Topics Quantum Electron. (2)

L. Lin, E. Goldstein, "Opportunities and challenges for MEMS in lightwave communications," IEEE J. Sel. Topics Quantum Electron. 8, 163-172 (2002).

L. Houlet, P. Helin, T. Bourouina, G. Reyne, E. Gergam, H. Fujita, "Movable vertical mirror arrays for optical microswitch matrixes and their electromagnetic actuation," IEEE J. Sel. Topics Quantum Electron. 8, 58-63 (2002).

IEEE Photon. Technol. Lett. (1)

R. T. Chen, H. Nguyen, M. C. Wu, "A high-speed low-voltage stress-induced micromachined 2 x 2 optical switch," IEEE Photon. Technol. Lett. 11, 1396-1398 (1999).

J. Lightw. Technol. (1)

L. Lin, E. Goldstein, R. Tkach, "On the expandability of the free-space micromachined optical cross connects," J. Lightw. Technol. 18, 482-489 (2000).

J. Microelectromech. Syst. (1)

C. Marxer, C. Thio, M. Gretillat, N. F. de Rooji, R. Battig, R. Anthamatten, B. Valk, P. Vogel, "Vertical mirrors fabricated by deep reactive ion etching for fiber-optic switching applications," J. Microelectromech. Syst. 6, 277-285 (1997).

J. Micromech. Microeng. (1)

E. M. Conway, V. J. Cunnane, "Electrochemical characterization of Si in tetra-methyl ammonium hydroxide (TMAH) and TMAH: Triton-X-100 solutions under white light effects," J. Micromech. Microeng. 12, 136-148 (2002).

J. Smart Mater. (1)

J. W. Judy, "Microelectromechanical Systems (MEMS)—Their design, fabrication, and broad range of application," J. Smart Mater. 10, 1115-1134 (2001).

Opt. Rev. (1)

G. D. J. Su, S. H. Hung, D. Jia, F. Jiang, "Serpentine spring corner design for MEMS optical switches with large mirror mass," Opt. Rev. 12, 339-344 (2005).

Photon. Technol. Lett. (1)

G. Su, H. Toshiyoshi, M. C. Wu, "Surface-micromachined 2-D optical scanners with high-performance single-crystalline silicon micromirrors," Photon. Technol. Lett. 13, 606-608 (2001).

Sci. Amer. (1)

D. Bishop, C. Giles, S. Das, "The rise of optical switching," Sci. Amer. 284, 88-94 (2001).

Other (1)

Telcordia GR-1073-CORE pp. 4-11 (2001) Issue 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.