Abstract

According to their underlying switching technologies, reconfigurable optical add/drop multiplexers (ROADMs) can be classified into three categories: Category I consists of a single large optical switch; category II is composed of a number of small optical switches aligned in parallel; and category III has a single optical switch and only one wavelength being added/dropped. To evaluate the wavelength-routing capability of ROADMs of various categories in dynamic optical networks, a theoretical routing-power model is developed, taking into account different ROADM architectures and dynamic traffic. Numerical simulations show that different category ROADMs differ considerably in their wavelength-routing capabilities, which are significantly dependent upon dynamic traffic. It is also observed that among these three ROADM architectures, category I (III) ROADMs offer the greatest (lowest) wavelength-routing capability and the lowest (highest) susceptibility to dynamic traffic. In particular, to maximize the ROADM-based network flexibility and connectivity, a set of practically applicable criteria is identified on designing/choosing optimum ROADMs for given dynamic optical networks.

© 2006 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription