Abstract

In this paper, the authors report on the fabrication and characterization of poly-methylmethacrylate (PMMA) buried channel waveguides. The waveguides were fabricated using an emerging lithographic technique known as proton-beam writing. Depending on the proton fluence used, two different waveguide-formation mechanisms are possible. Single-mode waveguides with the light confinement occurring at the end of range were fabricated using fluences < 75 nC/mm<sup>2</sup>. The refractive-index profiles of these single-mode waveguides were recovered using the propagation mode near-field method. For fluences > 100 nC/mm<sup>2</sup>, multimode waveguides may also be fabricated with the light confinement occurring beneath the end of range. The compaction of the PMMA surface after proton irradiation was investigated using an atomic force microscope. The propagation losses of these PMMA waveguides were also determined.

© 2006 IEEE

PDF Article

References

  • View by:
  • |

  1. P. D. Townsend, P. J. Chandler, L. Zhang, Optical Effects of Ion Implantation (Cambridge Univ. Press, 1994).
  2. F. X. Wang, F. Chen, X. L. Wang, Q. M. Lu, K. M. Wang, D. Y. Shen, H. J. Ma, R. Nie, "Fabrication of optical waveguides in $\hbox{KTiOAsO}_{4}$ by He or Si ion implantation," Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. 215, 389-393 (2004).
  3. G. Fu, K. M. Wang, F. Chen, X. L. Wang, S. L. Li, D. Y. Shen, H. J. Ma, R. Nui, "Extraodinary refractive-index increase in MeV $\hbox{B}^{3+}$ ion-implanted $\hbox{LiNbO}_{3}$ waveguide," Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. 211, 346-350 (2003).
  4. P. Moretti, M. F. Joubert, S. Tascu, B. Jacquier, M. Kaczkan, M. Malinowskii, J. Samecki, "Luminescence of $\hbox{Nd}^{3+}$ in proton or helium-implanted channel waveguides in Nd:YAG crystals," Opt. Mater. 24, 315-319 (2003).
  5. F. Chen, X. L. Wang, X. S. Li, L. L. Hu, Q. M. Lu, K. M. Wang, B. R. Shi, D. Y. Shen, "Ion-implanted waveguides in $\hbox{Nd}^{3+}$-doped silicate glass and $\hbox{Er}^{3+}\!/\hbox{Yb}^{3+}$ co-doped phosphate glass," Appl. Surf. Sci. 193, 92-101 (2002).
  6. L. Eldada, L. W. Shacklette, "Advances in polymer integrated optics," IEEE J. Sel. Topics Quantum Electron. 6, 54-68 (2000).
  7. D. M. Ruck, S. Brunner, K. Tinschert, W. F. X. Frank, "Production of buried waveguides in PMMA by high energy ion implantation," Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. 106, 447-451 (1995).
  8. W. Hong, H. J. Woo, H. W. Choi, Y. S. Kim, G. D. Kim, "Optical property modification of PMMA by ion-beam implantation," Appl. Surf. Sci. 169–170, 428-432 (2001).
  9. T. C. Sum, A. A. Bettiol, H. L. Seng, J. A. van Kan, F. Watt, "Direct measurement of proton-beam-written optical sidewall morphorlogy using an atomic force microscope," Appl. Phys. Lett. 85, 1398-1400 (2004).
  10. T. C. Sum, A. A. Bettiol, H. L. Seng, I. Rajta, J. A. van Kan, F. Watt, "Proton beam writing of passive waveguides in PMMA," Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. 210, 266-271 (2003).
  11. T. C. Sum, A. A. Bettiol, J. A. van Kan, F. Watt, E. Y. B. Pun, K. K. Tung, "Proton beam writing of low-loss polymer optical waveguides," Appl. Phys. Lett. 83, 1707-1709 (2003).
  12. K. Liu, E. Y. B. Pun, T. C. Sum, A. A. Bettiol, J. A. van Kan, F. Watt, "Erbium-doped waveguide amplifiers fabricated using focused proton beam writing," Appl. Phys. Lett. 84, 684-686 (2004).
  13. K. Ansari, J. A. van Kan, A. A. Bettiol, F. Watt, "Proton beam fabrication of nickel stamps for nanoimprint lithography," Appl. Phys. Lett. 85, 476-478 (2004).
  14. A. Roberts, M. L. von Bibra, "Fabrication of buried channel waveguides in fused silica using focused MeV proton beam irradiation," J. Lightw. Technol. 14, 2554-2557 (1996).
  15. M. L. von Bibra, A. Roberts, S. D. Dods, "Ion beam energy attenuation for fabrication of buried, variable-depth, optical waveguides," Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. 168, 47-52 (2000).
  16. F. Watt, J. A. van Kan, T. Osipowicz, "Three-dimensional microfabrication using maskless irradiation with MeV ion beams: Proton beam micromachining," MRS Bull. 25, 33-38 (2000).
  17. K. Morishita, "Refractive-index-profile determination of single-mode optical fibers by a propagation-mode near-field scanning technique," J. Lightw. Technol. LT-1, 445-449 (1983).
  18. K. Morishita, "Index profiling of three-dimensional optical waveguides by the propagation-mode near-field method," J. Lightw. Technol. LT-4, 1120-1124 (1986).
  19. M. L. von Bibra, A. Roberts, "Refractive index reconstruction of graded-index buried channel waveguides from their mode intensities," J. Lightw. Technol. 15, 1695-1699 (1997).
  20. F. Watt, J. A. van Kan, I. Rajta, A. A. Bettiol, T. F. Choo, M. B. H. Breese, T. Osipowicz, "The National University of Singapore high energy ion nano-probe facility: Performance tests," Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. 210, 14-20 (2003).
  21. A. A. Bettiol, J. A. van Kan, T. C. Sum, F. Watt, "A LabVIEW—Based scanning and control system for proton beam micromachining," Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. 181, 49-53 (2001).
  22. J. F. Ziegler, J. P. Biersack, U. Littmark, Stopping and Range of Ions in Solids (Pergamon, 1985).
  23. H. W. Choi, H. J. Woo, W. Hong, J. K. Kim, S. K. Lee, C. H. Eum, "Structural modification of poly(methyl methacrylate) by proton irradiation," Appl. Surf. Sci. 169–170, 433-437 (2001).
  24. D. M. Ruck, J. Schulz, N. Deusch, "Ion irradiation induced chemical changes of polymers used for optical applications," Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. 131, 149-158 (1997).
  25. D. M. Ruck, "Ion induced modification of polymers at energies between 100 keV and 1 GeV applied for optical waveguides and improved metal adhesion," Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. 166–167, 602-609 (2000).

Appl. Phys. Lett. (4)

T. C. Sum, A. A. Bettiol, H. L. Seng, J. A. van Kan, F. Watt, "Direct measurement of proton-beam-written optical sidewall morphorlogy using an atomic force microscope," Appl. Phys. Lett. 85, 1398-1400 (2004).

T. C. Sum, A. A. Bettiol, J. A. van Kan, F. Watt, E. Y. B. Pun, K. K. Tung, "Proton beam writing of low-loss polymer optical waveguides," Appl. Phys. Lett. 83, 1707-1709 (2003).

K. Liu, E. Y. B. Pun, T. C. Sum, A. A. Bettiol, J. A. van Kan, F. Watt, "Erbium-doped waveguide amplifiers fabricated using focused proton beam writing," Appl. Phys. Lett. 84, 684-686 (2004).

K. Ansari, J. A. van Kan, A. A. Bettiol, F. Watt, "Proton beam fabrication of nickel stamps for nanoimprint lithography," Appl. Phys. Lett. 85, 476-478 (2004).

Appl. Surf. Sci. (3)

W. Hong, H. J. Woo, H. W. Choi, Y. S. Kim, G. D. Kim, "Optical property modification of PMMA by ion-beam implantation," Appl. Surf. Sci. 169–170, 428-432 (2001).

F. Chen, X. L. Wang, X. S. Li, L. L. Hu, Q. M. Lu, K. M. Wang, B. R. Shi, D. Y. Shen, "Ion-implanted waveguides in $\hbox{Nd}^{3+}$-doped silicate glass and $\hbox{Er}^{3+}\!/\hbox{Yb}^{3+}$ co-doped phosphate glass," Appl. Surf. Sci. 193, 92-101 (2002).

H. W. Choi, H. J. Woo, W. Hong, J. K. Kim, S. K. Lee, C. H. Eum, "Structural modification of poly(methyl methacrylate) by proton irradiation," Appl. Surf. Sci. 169–170, 433-437 (2001).

IEEE J. Sel. Topics Quantum Electron. (1)

L. Eldada, L. W. Shacklette, "Advances in polymer integrated optics," IEEE J. Sel. Topics Quantum Electron. 6, 54-68 (2000).

J. Lightw. Technol. (4)

A. Roberts, M. L. von Bibra, "Fabrication of buried channel waveguides in fused silica using focused MeV proton beam irradiation," J. Lightw. Technol. 14, 2554-2557 (1996).

K. Morishita, "Refractive-index-profile determination of single-mode optical fibers by a propagation-mode near-field scanning technique," J. Lightw. Technol. LT-1, 445-449 (1983).

K. Morishita, "Index profiling of three-dimensional optical waveguides by the propagation-mode near-field method," J. Lightw. Technol. LT-4, 1120-1124 (1986).

M. L. von Bibra, A. Roberts, "Refractive index reconstruction of graded-index buried channel waveguides from their mode intensities," J. Lightw. Technol. 15, 1695-1699 (1997).

MRS Bull. (1)

F. Watt, J. A. van Kan, T. Osipowicz, "Three-dimensional microfabrication using maskless irradiation with MeV ion beams: Proton beam micromachining," MRS Bull. 25, 33-38 (2000).

Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. (9)

D. M. Ruck, J. Schulz, N. Deusch, "Ion irradiation induced chemical changes of polymers used for optical applications," Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. 131, 149-158 (1997).

D. M. Ruck, "Ion induced modification of polymers at energies between 100 keV and 1 GeV applied for optical waveguides and improved metal adhesion," Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. 166–167, 602-609 (2000).

F. Watt, J. A. van Kan, I. Rajta, A. A. Bettiol, T. F. Choo, M. B. H. Breese, T. Osipowicz, "The National University of Singapore high energy ion nano-probe facility: Performance tests," Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. 210, 14-20 (2003).

A. A. Bettiol, J. A. van Kan, T. C. Sum, F. Watt, "A LabVIEW—Based scanning and control system for proton beam micromachining," Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. 181, 49-53 (2001).

M. L. von Bibra, A. Roberts, S. D. Dods, "Ion beam energy attenuation for fabrication of buried, variable-depth, optical waveguides," Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. 168, 47-52 (2000).

D. M. Ruck, S. Brunner, K. Tinschert, W. F. X. Frank, "Production of buried waveguides in PMMA by high energy ion implantation," Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. 106, 447-451 (1995).

F. X. Wang, F. Chen, X. L. Wang, Q. M. Lu, K. M. Wang, D. Y. Shen, H. J. Ma, R. Nie, "Fabrication of optical waveguides in $\hbox{KTiOAsO}_{4}$ by He or Si ion implantation," Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. 215, 389-393 (2004).

G. Fu, K. M. Wang, F. Chen, X. L. Wang, S. L. Li, D. Y. Shen, H. J. Ma, R. Nui, "Extraodinary refractive-index increase in MeV $\hbox{B}^{3+}$ ion-implanted $\hbox{LiNbO}_{3}$ waveguide," Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. 211, 346-350 (2003).

T. C. Sum, A. A. Bettiol, H. L. Seng, I. Rajta, J. A. van Kan, F. Watt, "Proton beam writing of passive waveguides in PMMA," Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. 210, 266-271 (2003).

Opt. Mater. (1)

P. Moretti, M. F. Joubert, S. Tascu, B. Jacquier, M. Kaczkan, M. Malinowskii, J. Samecki, "Luminescence of $\hbox{Nd}^{3+}$ in proton or helium-implanted channel waveguides in Nd:YAG crystals," Opt. Mater. 24, 315-319 (2003).

Other (2)

P. D. Townsend, P. J. Chandler, L. Zhang, Optical Effects of Ion Implantation (Cambridge Univ. Press, 1994).

J. F. Ziegler, J. P. Biersack, U. Littmark, Stopping and Range of Ions in Solids (Pergamon, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.