Abstract

A technique for temperature-insensitive force measurement using a single fiber Bragg grating (FBG) based on strain-gradient-induced reflection spectrum-bandwidth modulation and optical-power detection is demonstrated. A specially designed bending cantilever beam (BCB) is used to induce axial-strain gradient along the sensing FBG, resulting in a Bragg bandwidth modulation. The broadening of the FBG spectrum bandwidth and reflection optical power linearly change with the applied force, and both of them are insensitive to spatially uniform temperature variations. For a temperature range from 20 °C to 80 °C a linear response of force measurement up to 20 N with fluctuation less than 0.8% full-scale is achieved without any temperature compensation. The demodulation process is simplified by optical-power detection via a p-i-n photodiode, and the sensing system is potentially cost-effective.

© 2006 IEEE

PDF Article

References

  • View by:
  • |

  1. K. O. Hill, G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightw. Technol. 15, 1263-1276 (1997).
  2. A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. Blanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, "Fiber grating sensors," J. Lightw. Technol. 15, 1442-1461 (1997).
  3. Y. L. Yu, H. Tam, W. Chung, M. S. Demokan, "Fiber Bragg grating sensor for simultaneous measurement of displacement and temperature," Opt. Lett. 25, 1141-1143 (2000).
  4. W. G. Zhang, X. Y. Dong, Q. D. Zhao, G. Y. Kai, S. Z. Yuan, "FBG-type sensor for simultaneous measurement of force (or displacement) and temperature based on bilateral cantilever beam," IEEE Photon. Technol. Lett. 13, 1340-1342 (2001).
  5. L. F. Xue, Q. D. Zhao, J. G. Liu, G. L. Huang, T. Guo, X. Y. Dong, "Force sensing with temperature self-compensated based on a loop thin-wall section beam," IEEE Photon. Technol. Lett. 18, 271-273 (2006).
  6. Y. Q. Liu, K. S. Chiang, P. L. Chu, "Fiber-Bragg-grating force sensor based on a wavelength-switching actively mode-locked erbium-doped fiber laser," Appl. Opt. 44, 4822-4829 (2005).
  7. R. Romero, O. Frazão, D. A. Pereira, H. M. Salgado, F. M. Araújo, L. A. Ferreira, "Intensity-referenced and temperature-insensitive curvature-sensing concept based on chirped fiber Bragg grating," Appl. Opt. 44, 3821-3826 (2005).
  8. Y. N. Zhu, P. Shum, C. Lu, M. B. Lacquet, P. L. Swart, A. A. Chtcherbakov, "Temperature insensitive measurements of static displacements using a fiber Bragg grating," Opt. Express 11, 1918-1924 (2003).
  9. T. Guo, X. G. Qiao, Z. A. Jia, Q. D. Zhao, X. Y. Dong, "Simultaneous measurement of temperature and pressure by a single fiber Bragg grating with a broadened reflection spectrum," Appl. Opt. 45, 2935-2939 (2006).

Appl. Opt. (3)

IEEE Photon. Technol. Lett. (2)

W. G. Zhang, X. Y. Dong, Q. D. Zhao, G. Y. Kai, S. Z. Yuan, "FBG-type sensor for simultaneous measurement of force (or displacement) and temperature based on bilateral cantilever beam," IEEE Photon. Technol. Lett. 13, 1340-1342 (2001).

L. F. Xue, Q. D. Zhao, J. G. Liu, G. L. Huang, T. Guo, X. Y. Dong, "Force sensing with temperature self-compensated based on a loop thin-wall section beam," IEEE Photon. Technol. Lett. 18, 271-273 (2006).

J. Lightw. Technol. (2)

K. O. Hill, G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightw. Technol. 15, 1263-1276 (1997).

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. Blanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, "Fiber grating sensors," J. Lightw. Technol. 15, 1442-1461 (1997).

Opt. Express (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.