Abstract

This paper reports on timing-jitter analysis of an all-optical clock-recovery scheme at 40 GHz using self-pulsating (SP) lasers. Based on the analogy with injection locking of oscillators, theoretical investigations on phase-noise properties of the recovered clock lead to the demonstration of a filtering function with slope that is compliant with the International Telecommunications Union (ITU) standards and allow us to underline the dependence of the cutoff frequency of the filtering transfer function on the spectral linewidth of the free running SP laser. From this phase-noise analysis, an analytical expression of the timing jitter of the recovered clock is derived, including the optical signal-to-noise ratio (OSNR) of the injected signal. A set of experiments on all-optical clock recovery at 40 GHz is then presented and demonstrates the crucial role of the spectral linewidth on the timing-jitter-filtering function of the SP laser. In good agreement with theoretical results, the impact of the OSNR degradation of the injected signal on the timing jitter is also demonstrated. Finally, the all-optical clock-recovery operation using a quantum-dot SP laser is shown to be standard compliant in terms of timing jitter, even for highly degraded OSNR.

© 2006 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription