Abstract

This paper reports on timing-jitter analysis of an all-optical clock-recovery scheme at 40 GHz using self-pulsating (SP) lasers. Based on the analogy with injection locking of oscillators, theoretical investigations on phase-noise properties of the recovered clock lead to the demonstration of a filtering function with slope that is compliant with the International Telecommunications Union (ITU) standards and allow us to underline the dependence of the cutoff frequency of the filtering transfer function on the spectral linewidth of the free running SP laser. From this phase-noise analysis, an analytical expression of the timing jitter of the recovered clock is derived, including the optical signal-to-noise ratio (OSNR) of the injected signal. A set of experiments on all-optical clock recovery at 40 GHz is then presented and demonstrates the crucial role of the spectral linewidth on the timing-jitter-filtering function of the SP laser. In good agreement with theoretical results, the impact of the OSNR degradation of the injected signal on the timing jitter is also demonstrated. Finally, the all-optical clock-recovery operation using a quantum-dot SP laser is shown to be standard compliant in terms of timing jitter, even for highly degraded OSNR.

© 2006 IEEE

PDF Article

References

  • View by:
  • |

  1. A. Jourdan, "The perspective of optical packet switching inIP dominant backbone and metropolitan networks," IEEE Commun. Mag. 39, 136-141 (2001).
  2. B. Lavigne, P. Guerber, P. Brindel, E. Balmefrezol, B. Dagens, "Cascade of 100 optical 3R regenerators at 40 Gbit/s based on all-active Mach–Zehnder interferometer," Proc. ECOC (2001) pp. 290-291.
  3. B. Lavigne, P. Guerber, D. Chiaroni, C. Janz, A. Jourdan, B. Sartorius, C. Bornholdt, M. Morlhe, "Test at 10Gbit/s of an optical 3R regenerator using an integrated all-optical clock recovery," Proc. ECOC (1999) pp. 262-263.
  4. B. Sartorius, C. Bornholdt, O. Brox, H. J. Ehrke, D. Hoffmann, R. Ludwig, M. Mohrle, "All-optical clock recovery module based on self-pulsating DFB laser," Electron. Lett. 34, 1664-1665 (1998).
  5. C. Bornholdt, B. Sartorius, S. Schelbase, M. Mohrle, S. Bauer, "Self-pulsating DFB laser for all-optical clock recovery at 40 Gb/s," Electron. Lett. 36, 327-328 (2000).
  6. O. Brox, S. Bauer, M. Biletzke, H. Ding, J. Kreissl, H.-J. Wunsche, B. Sartorius, "Self-pulsating DFB for 40 GHz clock-recovery: Impact of intensity fuctuations on jitter," Optical Fiber Commun. Conf. (OFC) Los AngelesCA (2004) Paper MF55.
  7. T. Ohno, K. Sato, T. Shimizu, T. Furuta, H. Ito, "Recovery of 40 GHz optical clock from 160 Gb/s data using regeneratively modelocked semiconductor laser," Electron. Lett. 39, 453-455 (2003).
  8. W. Mao, Y. Li, M. Al-Mumin, G. Li, "All-optical clock recovery from RZ-format data by using a two-section gain-coupled DFB laser," J. Lightw. Technol. 20, 1705-1714 (2002).
  9. Y. Li, C. Kim, G. Li, Y. Kaneko, R. L. Jungerman, O. Buccafusca, "Wavelength and polarization insensitive all-optical clock recovery from 96-Gb/s data by using a two-section gain-coupled DFB laser," IEEE Photon. Technol. Lett. 15, 590-592 (2003).
  10. H. Bao, Y. J. Wen, H. F. Liu, "Impact of saturable absorption on performance of optical clock recovery using a mode-locked multisection semiconductor laser," IEEE J. Quantum Electron. 40, 1177-1185 (2004).
  11. G.-H. Duan, C. Gosset, B. Lavigne, R. Brenot, B. Thedrez, J. Jacquet, O. Leclerc, "40 GHz all-optical clock recovery using polarization insensitive distributed Bragg refector lasers," Conf. Lasers Electro-Optics (CLEO) BaltimoreMD (2003) Paper CThQ5.
  12. G.-H. Duan, G. Pham, "Injection locking properties of self-pulsation in semiconductor lasers," Proc. Inst. Electr. Eng.—Optoelectron. 144, 228-233 (1997).
  13. R. Adler, "A study of locking phenomena in oscillators," Proc. IEEE 61, 1380-1385 (1973).
  14. G. P. Agrawal, N. K. Dutta, Long Wavelength Semiconductor Lasers (Van Nostrand, 1986).
  15. G.-H. Duan, G. Pham, "A new model of self-pulsating semiconductor lasers," Proc. SPIE—Physics Simulation Optoelectronic Devices VI (1998) pp. 497-507.
  16. K. Sato, "Optical pulse generation using Fabry–Pérot lasers under continuous-wave operation," IEEE J. Sel. Topics Quantum Electron. 9, 1288-1293 (2003).
  17. F. Lelarge, B. Rousseau, B. Dagens, F. Poingt, F. Pommereau, A. Accard, "Room temperature continuous-wave operation of buried ridge stripe lasers using InAs-InP (100) quantum dots as active core," IEEE Photon. Technol. Lett. 17, 1369-1371 (2005).
  18. J. Renaudier, G.-H. Duan, J.-G. Provost, H. Debregeas-Sillard, P. Gallion, "Phase correlation between longitudinal modes in semiconductor self-pulsating DBR lasers," IEEE Photon. Technol. Lett. 17, 741-743 (2005).
  19. J. Renaudier, R. Brenot, B. Dagens, F. Lelarge, B. Rousseau, F. Poingt, O. Legouezigou, F. Pommereau, A. Accard, P. Gallion, G.-H. Duan, "45 GHz self-pulsation with narrow linewidth in quantum dot Fabry-Pérot semiconductor lasers at 1.5 $\mu\hbox{m}$," Electron. Lett. 41, 1007-1008 (2005).
  20. J. Renaudier, B. Lavigne, F. Lelarge, M. Jourdran, B. Dagens, O. Legouezigou, P. Gallion, G.-H. Duan, "Standard-compliant jitter transfer function of all-optical clock recovery at 40 GHz based on a quantum-dots self-pulsating semiconductor laser," IEEE Photon. Technol. Lett. 18, 1249-1251 (2006).
  21. N. A. Olsson, "Lightwave systems with optical amplifiers," J. Lightw. Technol. 7, 1071-1082 (1989).
  22. G.-H. Duan, E. Georgiev, "Non-white photodetection noise at the output of an optical amplifier: Theory and experiment," IEEE J. Quantum Electron. 37, 1008-1014 (2001).

Electron. Lett. (4)

B. Sartorius, C. Bornholdt, O. Brox, H. J. Ehrke, D. Hoffmann, R. Ludwig, M. Mohrle, "All-optical clock recovery module based on self-pulsating DFB laser," Electron. Lett. 34, 1664-1665 (1998).

C. Bornholdt, B. Sartorius, S. Schelbase, M. Mohrle, S. Bauer, "Self-pulsating DFB laser for all-optical clock recovery at 40 Gb/s," Electron. Lett. 36, 327-328 (2000).

T. Ohno, K. Sato, T. Shimizu, T. Furuta, H. Ito, "Recovery of 40 GHz optical clock from 160 Gb/s data using regeneratively modelocked semiconductor laser," Electron. Lett. 39, 453-455 (2003).

J. Renaudier, R. Brenot, B. Dagens, F. Lelarge, B. Rousseau, F. Poingt, O. Legouezigou, F. Pommereau, A. Accard, P. Gallion, G.-H. Duan, "45 GHz self-pulsation with narrow linewidth in quantum dot Fabry-Pérot semiconductor lasers at 1.5 $\mu\hbox{m}$," Electron. Lett. 41, 1007-1008 (2005).

IEEE Commun. Mag. (1)

A. Jourdan, "The perspective of optical packet switching inIP dominant backbone and metropolitan networks," IEEE Commun. Mag. 39, 136-141 (2001).

IEEE J. Quantum Electron. (2)

H. Bao, Y. J. Wen, H. F. Liu, "Impact of saturable absorption on performance of optical clock recovery using a mode-locked multisection semiconductor laser," IEEE J. Quantum Electron. 40, 1177-1185 (2004).

G.-H. Duan, E. Georgiev, "Non-white photodetection noise at the output of an optical amplifier: Theory and experiment," IEEE J. Quantum Electron. 37, 1008-1014 (2001).

IEEE J. Sel. Topics Quantum Electron. (1)

K. Sato, "Optical pulse generation using Fabry–Pérot lasers under continuous-wave operation," IEEE J. Sel. Topics Quantum Electron. 9, 1288-1293 (2003).

IEEE Photon. Technol. Lett. (4)

F. Lelarge, B. Rousseau, B. Dagens, F. Poingt, F. Pommereau, A. Accard, "Room temperature continuous-wave operation of buried ridge stripe lasers using InAs-InP (100) quantum dots as active core," IEEE Photon. Technol. Lett. 17, 1369-1371 (2005).

J. Renaudier, G.-H. Duan, J.-G. Provost, H. Debregeas-Sillard, P. Gallion, "Phase correlation between longitudinal modes in semiconductor self-pulsating DBR lasers," IEEE Photon. Technol. Lett. 17, 741-743 (2005).

J. Renaudier, B. Lavigne, F. Lelarge, M. Jourdran, B. Dagens, O. Legouezigou, P. Gallion, G.-H. Duan, "Standard-compliant jitter transfer function of all-optical clock recovery at 40 GHz based on a quantum-dots self-pulsating semiconductor laser," IEEE Photon. Technol. Lett. 18, 1249-1251 (2006).

Y. Li, C. Kim, G. Li, Y. Kaneko, R. L. Jungerman, O. Buccafusca, "Wavelength and polarization insensitive all-optical clock recovery from 96-Gb/s data by using a two-section gain-coupled DFB laser," IEEE Photon. Technol. Lett. 15, 590-592 (2003).

J. Lightw. Technol. (2)

N. A. Olsson, "Lightwave systems with optical amplifiers," J. Lightw. Technol. 7, 1071-1082 (1989).

W. Mao, Y. Li, M. Al-Mumin, G. Li, "All-optical clock recovery from RZ-format data by using a two-section gain-coupled DFB laser," J. Lightw. Technol. 20, 1705-1714 (2002).

Proc. IEEE (1)

R. Adler, "A study of locking phenomena in oscillators," Proc. IEEE 61, 1380-1385 (1973).

Proc. Inst. Electr. Eng.—Optoelectron. (1)

G.-H. Duan, G. Pham, "Injection locking properties of self-pulsation in semiconductor lasers," Proc. Inst. Electr. Eng.—Optoelectron. 144, 228-233 (1997).

Other (6)

G. P. Agrawal, N. K. Dutta, Long Wavelength Semiconductor Lasers (Van Nostrand, 1986).

G.-H. Duan, G. Pham, "A new model of self-pulsating semiconductor lasers," Proc. SPIE—Physics Simulation Optoelectronic Devices VI (1998) pp. 497-507.

G.-H. Duan, C. Gosset, B. Lavigne, R. Brenot, B. Thedrez, J. Jacquet, O. Leclerc, "40 GHz all-optical clock recovery using polarization insensitive distributed Bragg refector lasers," Conf. Lasers Electro-Optics (CLEO) BaltimoreMD (2003) Paper CThQ5.

B. Lavigne, P. Guerber, P. Brindel, E. Balmefrezol, B. Dagens, "Cascade of 100 optical 3R regenerators at 40 Gbit/s based on all-active Mach–Zehnder interferometer," Proc. ECOC (2001) pp. 290-291.

B. Lavigne, P. Guerber, D. Chiaroni, C. Janz, A. Jourdan, B. Sartorius, C. Bornholdt, M. Morlhe, "Test at 10Gbit/s of an optical 3R regenerator using an integrated all-optical clock recovery," Proc. ECOC (1999) pp. 262-263.

O. Brox, S. Bauer, M. Biletzke, H. Ding, J. Kreissl, H.-J. Wunsche, B. Sartorius, "Self-pulsating DFB for 40 GHz clock-recovery: Impact of intensity fuctuations on jitter," Optical Fiber Commun. Conf. (OFC) Los AngelesCA (2004) Paper MF55.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.