Abstract

In a conventional wavelength-routed network, the bandwidth of one wavelength is considered as the minimum granularity for a given connection request. Therefore, no multiple connection requests can be accepted by using a single wavelength simultaneously. This may cause inefficiency in the bandwidth utilization in some cases. In this paper, the focus is on the variable-bandwidth approach called an optical code (OC)-based path to improve this bandwidth utilization. The concept of OC-enabling paths is investigated, which shows its potential in resolving the above granularity problem inherent to the wavelength-routed network. First, two optical paths, called the OC-labeled and OC division multiplexing (OCDM) paths, are proposed. The former is based upon label switching and statistical multiplexing, while the latter is based upon OCDM. Next, OC-label and OCDM optical cross connects are described to support OC-labeled and OCDM paths, respectively. In this paper, a coherent time-spread OC is adopted. A two-state flow-fluid traffic model is addressed and regarded as the general analysis model. Finally, the performances between these proposed paths are qualified and compared, and numerical results show that the OC-labeled path outperforms the OCDM path under short burst duration time, whereas the OCDM path, provides higher flexibility than the OC-labeled path, owing to its independence of burst duration time.

© 2006 IEEE

PDF Article

References

  • View by:
  • |

  1. The Internet Engineering Task Force"Generalized Multi-Protocol Label Swithching (GMPLS) Signaling Functional Description," Request for Comments: RFC's 3471 http://www.ietf.org.
  2. B. Wen, K. Sivalingam, "Routing, wavelength and time-slot assignment in time division multiplexed wavelength-routed optical WDM networks," Proc. IEEE Infocom (2002) pp. 1442-1450.
  3. K. Kitayama, "Code division multiplexing lightwave networks based upon optical code conversion," IEEE J. Sel. Areas Commun. 16, 1309-1319 (1998).
  4. R. Guerin, H. Ahmadi, M. Naghshien, "Equivalent capacity and its application to bandwidth allocation in high-speed networks," IEEE J. Sel. Areas Commun. 9, 968-981 (1991).
  5. P. C. Teh, P. Petropoulos, M. Ibsen, D. J. Richardson, "A comparative study of the performance of seven- and 63-chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings," J. Lightw. Technol. 19, 1352-1365 (2001).
  6. P. C. Teh, M. Ibsen, L. B. Fu, J. H. Lee, Z. Yusoff, D. J. Richardson, "A 16-channel OCDMA system (4 OCDM $\times$ 4WDM) based on 16-chip, 20 Gchip/s superstructure fiber Bragg gratings and DFB fiber laser transmitters," Proc. OFC Conf. (2002) pp. 600-601.
  7. X. Wang, K. Matsushima, A. Nishiki, N. Wada, K. Kitayama, "High reflectivity superstructured FBG for coherent optical code generation and recognition," OSA Opt. Express 12, 5457-5468 (2004).
  8. Spohn, McDysan, ATM: Theory and Applications (McGraw-Hill, 1994).
  9. N. Wada, K. Kitayama, "A 10 Gb/s optical code division multiplexing using 8-Chip optical bipolar code and coherent detection," J. Lightw. Technol. 17, 1758-1765 (1999).
  10. K. Kitayama, "Architectural considerations for photonic IP router based upon optical code correlation," J. Lightw. Technol. 18, 1834-1844 (2000).
  11. R. S. Tucker, W. D. Zhong, "Photonic packet switching," IEICE Trans. Commun. E82-B, 254-264 (1999).
  12. C. Guillemot, "Transparent optical packet switching: The European ACTS KEPOS project approach," J. Lightw. Technol. 16, 2117-2134 (1998).
  13. L. Dittman, "The European IST project DAVID: A viable approach toward optical packet switching. Architecture and performance of AWG-based optical switching nodes for IP networks," IEEE J. Sel. Areas Commun. 21, 1026-1040 (2003).
  14. D. K. Hunter, K. M. Guild, J. D. Bainbridge, "WASPNET: A wavelength switched packet network," IEEE Commun. Mag. 37, 120-129 (1999).
  15. D. K. Hunter, W. D. Cornwell, T. H. Gilfedder, A. Franzen, I. Andonovic, "SLOB: A switch with large optical buffers for packet switching," J. Lightw. Technol. 16, 1725-1736 (1998).
  16. A. Pattavina, "Architectures and performance of optical packet switching nodes for IP networks," J. Lightw. Technol. 23, 1023-1032 (2005).
  17. L. Li, S. Scott, J. Deogun, "A novel fiber delay line buffering architecture for optical packet switching," Proc. IEEE GLOBECOM (2003) pp. 2809-2813.
  18. V. Eramo, M. Listanti, "Packet loss in a bufferless optical WDM switch employing shared tunable wavelength converters," J. Lightw. Technol. 18, 1818-1833 (2000).
  19. F.-S. Choa, X. Zhao, X. Yu, J. Lin, J. P. Zhang, Y. Gu, G. Ru, G. Zhang, L. Li, H. Xiang, H. Hadimioglu, H. J. Chao, "An optical packet switch based on WDM technologies," J. Lightw. Technol. 23, 994-1014 (2005).
  20. M. C. Chia, D. Hunter, I. Andonovic, P. Ball, I. Wright, S. Ferguson, K. Guild, M. O'Mahony, "Packet loss and delay performance of feedback and feed-forward arrayed-waveguide grating-based optical packet switches with WDM inputs-outputs," J. Lightw. Technol. 19, 1241-1253 (2001).
  21. K. Kitayama, M. Murata, "Versatile optical code-based MPLS for circuit, burst, and packet switchings," J. Lightw. Technol. 21, 2753-2764 (2003).
  22. H. Harai, M. Murata, "Prioritized buffer management in photonic packet switches for DiffServ assured forwarding," Proc. 6th Work. Conf ONDM (2002) pp. 231-245.
  23. D. D. Sampson, G. J. Pendock, R. A. Griffin, "Photonic code-division multiple-access communications," Fiber Integr. Opt. 16, 126-157 (1997).
  24. D. J. G. Mestdagh, Fundamentals of Multiaccess Optical Fiber Networks (Artech House, 1995).
  25. P. R. Prucnal, M. A. Santoro, T. R. Fan, "Spread spectrum fiber-optic local area network using optical processing," J. Lightw. Technol. LT-4, 547-554 (1986).
  26. J. A. Salehi, C. A. Brackett, "Code division multiple-access technique in optical fiber networks, part I: Fundamental principals and part II: Systems performance analysis," IEEE. Trans. Commun. 37, 824-842 (1989).
  27. X. Wang, K. Matsushima, A. Nishiki, N. Wada, F. Kubota, K. Kitayama, "High-performance optical code generation and recognition using 511-chip 640-Gchip/s phase-shifted superstructured FBG," Opt. Lett. 30, 355-357 (2005).
  28. Z. Jiang, D. S. Seo, S. D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, A. M. Weiner, "Four-user 10-Gb/s spectrally phase-coded O-CDMA system operating at 30 fJ/bit," IEEE Photon. Technol. Lett. 17, 705-707 (2005).
  29. H. P. Sardesai, A. M. Weiner, "Nonlinear fibre-optic receiver for ultrashort pulse code division multiple access communications," Electron. Lett. 33, 610-611 (1997).
  30. J. H. Lee, P. C. Teh, P. Petropoulos, M. Ibsen, D. J. Richardson, "A grating-based OCDMA coding-decoding system incorporating a nonlinear optical loop mirror for improved code recognition and noise reduction," J. Lightw. Technol. 20, 36-46 (2002).
  31. X. Wang, T. Hamanaka, N. Wada, K. Kitayama, "Dispersion-flattened-fiber based optical thresholder for multiple-access-interference suppression in OCDMA system," OSA Opt. Express 13, 5499-5505 (2005).
  32. A. A. Shaar, P. A. Davies, "Prime sequences: Quasi-optimal sequences for Or channel code division multiplexing," Electron. Lett. 19, 888-889 (1983).
  33. F. R. K. Chung, J. A. Salehi, V. K. Wei, "Optical orthogonal codes: Design, analysis, and applications," IEEE Trans. Inf. Theory 35, 595-604 (1989).
  34. S. Tamura, S. Nakano, K. Akazaki, "Optical code-multiplex transmission by gold sequences," J. Lightw. Technol. LT-3, 121-127 (1985).
  35. X. Wang, K. Kitayama, "Analysis of beat noise in coherent and incoherent time-spreading OCDMA," J. Lightw. Technol. 22, 2226-2235 (2004).
  36. E. K. H. Ng, E. H. Sargent, "Optimum threshold detection in real-time scalable high-speed multi-wavelength optical code-division multiple-access LANs," IEEE Trans. Commun. 50, 778-784 (2002).

Electron. Lett. (2)

H. P. Sardesai, A. M. Weiner, "Nonlinear fibre-optic receiver for ultrashort pulse code division multiple access communications," Electron. Lett. 33, 610-611 (1997).

A. A. Shaar, P. A. Davies, "Prime sequences: Quasi-optimal sequences for Or channel code division multiplexing," Electron. Lett. 19, 888-889 (1983).

Fiber Integr. Opt. (1)

D. D. Sampson, G. J. Pendock, R. A. Griffin, "Photonic code-division multiple-access communications," Fiber Integr. Opt. 16, 126-157 (1997).

IEEE Commun. Mag. (1)

D. K. Hunter, K. M. Guild, J. D. Bainbridge, "WASPNET: A wavelength switched packet network," IEEE Commun. Mag. 37, 120-129 (1999).

IEEE J. Sel. Areas Commun. (3)

K. Kitayama, "Code division multiplexing lightwave networks based upon optical code conversion," IEEE J. Sel. Areas Commun. 16, 1309-1319 (1998).

R. Guerin, H. Ahmadi, M. Naghshien, "Equivalent capacity and its application to bandwidth allocation in high-speed networks," IEEE J. Sel. Areas Commun. 9, 968-981 (1991).

L. Dittman, "The European IST project DAVID: A viable approach toward optical packet switching. Architecture and performance of AWG-based optical switching nodes for IP networks," IEEE J. Sel. Areas Commun. 21, 1026-1040 (2003).

IEEE Photon. Technol. Lett. (1)

Z. Jiang, D. S. Seo, S. D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, A. M. Weiner, "Four-user 10-Gb/s spectrally phase-coded O-CDMA system operating at 30 fJ/bit," IEEE Photon. Technol. Lett. 17, 705-707 (2005).

IEEE Trans. Commun. (1)

E. K. H. Ng, E. H. Sargent, "Optimum threshold detection in real-time scalable high-speed multi-wavelength optical code-division multiple-access LANs," IEEE Trans. Commun. 50, 778-784 (2002).

IEEE Trans. Inf. Theory (1)

F. R. K. Chung, J. A. Salehi, V. K. Wei, "Optical orthogonal codes: Design, analysis, and applications," IEEE Trans. Inf. Theory 35, 595-604 (1989).

IEEE. Trans. Commun. (1)

J. A. Salehi, C. A. Brackett, "Code division multiple-access technique in optical fiber networks, part I: Fundamental principals and part II: Systems performance analysis," IEEE. Trans. Commun. 37, 824-842 (1989).

IEICE Trans. Commun. (1)

R. S. Tucker, W. D. Zhong, "Photonic packet switching," IEICE Trans. Commun. E82-B, 254-264 (1999).

J. Lightw. Technol. (14)

C. Guillemot, "Transparent optical packet switching: The European ACTS KEPOS project approach," J. Lightw. Technol. 16, 2117-2134 (1998).

N. Wada, K. Kitayama, "A 10 Gb/s optical code division multiplexing using 8-Chip optical bipolar code and coherent detection," J. Lightw. Technol. 17, 1758-1765 (1999).

K. Kitayama, "Architectural considerations for photonic IP router based upon optical code correlation," J. Lightw. Technol. 18, 1834-1844 (2000).

D. K. Hunter, W. D. Cornwell, T. H. Gilfedder, A. Franzen, I. Andonovic, "SLOB: A switch with large optical buffers for packet switching," J. Lightw. Technol. 16, 1725-1736 (1998).

A. Pattavina, "Architectures and performance of optical packet switching nodes for IP networks," J. Lightw. Technol. 23, 1023-1032 (2005).

P. C. Teh, P. Petropoulos, M. Ibsen, D. J. Richardson, "A comparative study of the performance of seven- and 63-chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings," J. Lightw. Technol. 19, 1352-1365 (2001).

J. H. Lee, P. C. Teh, P. Petropoulos, M. Ibsen, D. J. Richardson, "A grating-based OCDMA coding-decoding system incorporating a nonlinear optical loop mirror for improved code recognition and noise reduction," J. Lightw. Technol. 20, 36-46 (2002).

S. Tamura, S. Nakano, K. Akazaki, "Optical code-multiplex transmission by gold sequences," J. Lightw. Technol. LT-3, 121-127 (1985).

X. Wang, K. Kitayama, "Analysis of beat noise in coherent and incoherent time-spreading OCDMA," J. Lightw. Technol. 22, 2226-2235 (2004).

P. R. Prucnal, M. A. Santoro, T. R. Fan, "Spread spectrum fiber-optic local area network using optical processing," J. Lightw. Technol. LT-4, 547-554 (1986).

V. Eramo, M. Listanti, "Packet loss in a bufferless optical WDM switch employing shared tunable wavelength converters," J. Lightw. Technol. 18, 1818-1833 (2000).

F.-S. Choa, X. Zhao, X. Yu, J. Lin, J. P. Zhang, Y. Gu, G. Ru, G. Zhang, L. Li, H. Xiang, H. Hadimioglu, H. J. Chao, "An optical packet switch based on WDM technologies," J. Lightw. Technol. 23, 994-1014 (2005).

M. C. Chia, D. Hunter, I. Andonovic, P. Ball, I. Wright, S. Ferguson, K. Guild, M. O'Mahony, "Packet loss and delay performance of feedback and feed-forward arrayed-waveguide grating-based optical packet switches with WDM inputs-outputs," J. Lightw. Technol. 19, 1241-1253 (2001).

K. Kitayama, M. Murata, "Versatile optical code-based MPLS for circuit, burst, and packet switchings," J. Lightw. Technol. 21, 2753-2764 (2003).

Opt. Lett. (1)

OSA Opt. Express (2)

X. Wang, T. Hamanaka, N. Wada, K. Kitayama, "Dispersion-flattened-fiber based optical thresholder for multiple-access-interference suppression in OCDMA system," OSA Opt. Express 13, 5499-5505 (2005).

X. Wang, K. Matsushima, A. Nishiki, N. Wada, K. Kitayama, "High reflectivity superstructured FBG for coherent optical code generation and recognition," OSA Opt. Express 12, 5457-5468 (2004).

Other (7)

Spohn, McDysan, ATM: Theory and Applications (McGraw-Hill, 1994).

The Internet Engineering Task Force"Generalized Multi-Protocol Label Swithching (GMPLS) Signaling Functional Description," Request for Comments: RFC's 3471 http://www.ietf.org.

B. Wen, K. Sivalingam, "Routing, wavelength and time-slot assignment in time division multiplexed wavelength-routed optical WDM networks," Proc. IEEE Infocom (2002) pp. 1442-1450.

P. C. Teh, M. Ibsen, L. B. Fu, J. H. Lee, Z. Yusoff, D. J. Richardson, "A 16-channel OCDMA system (4 OCDM $\times$ 4WDM) based on 16-chip, 20 Gchip/s superstructure fiber Bragg gratings and DFB fiber laser transmitters," Proc. OFC Conf. (2002) pp. 600-601.

L. Li, S. Scott, J. Deogun, "A novel fiber delay line buffering architecture for optical packet switching," Proc. IEEE GLOBECOM (2003) pp. 2809-2813.

H. Harai, M. Murata, "Prioritized buffer management in photonic packet switches for DiffServ assured forwarding," Proc. 6th Work. Conf ONDM (2002) pp. 231-245.

D. J. G. Mestdagh, Fundamentals of Multiaccess Optical Fiber Networks (Artech House, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.