Abstract

In this study, the gain-carrier characteristics of In0.02Ga0.98As and InAlGaAs quantum wells (QWs) of variant In and Al compositions with an emission wavelength of 838 nm are theoretically investigated. More compressive strain, caused by higher In and Al compositions in InAlGaAs QW, is found to provide higher material gain, lower transparency carrier concentration, and transparency radiative current density over the temperature range of 25-95 °C. To improve the output characteristics and high-temperature performance of 850-nm vertical-cavity surface-emitting laser (VCSEL), In0.15Al0.08Ga0.77As/Al0.3Ga0.7As is utilized as the active region, and a high-bandgap 10-nm-thick Al0.75Ga0.25As electronic blocking layer is employed for the first time. The threshold current and slope efficiency of the VCSEL with Al0.75Ga0.25As at 25 °C are 1.33 mA and 0.53 W/A, respectively. When this VCSEL is operated at an elevated temperature of 95 °C, the increase in threshold current is less than 21% and the decrease in slope efficiency is approximately 24.5%. A modulation bandwidth of 9.2 GHz biased at 4 mA is demonstrated.

© 2006 IEEE

PDF Article

References

  • View by:
  • |

  1. J. Gilor, I. Samid and D. Fekete, "Threshold current density reduction of strained AlInGaAs quantum-well laser", IEEE J. Quantum Electron., vol. 40, no. 10, pp. 1355-1364, Oct. 2004.
  2. J. A. Lehman, R. A. Morgan, M. K. Hibbs-Brenner and D. Carlson, "High-frequency modulation characteristics of hybrid dielectric/AlGaAs mirror single-mode VCSELs", Electron. Lett., vol. 31, no. 15, pp. 1251-1252, Jul. 1995.
  3. K. L. Lear, A. Mar, K. D. Choquette, S. P. Kilcoyne, R. P. Schneider Jr. and K. M. Geib, "High-frequency modulation of oxide confined vertical cavity surface emitting lasers", Electron. Lett., vol. 32, no. 5, pp. 457-458, Feb. 1996.
  4. F. H. Peters and M. H. MacDougal, "High-speed high-temperature operation of vertical-cavity surface-emitting lasers", IEEE Photon. Technol. Lett., vol. 13, no. 7, pp. 645-647, Jul. 2001.
  5. T. E. Sale, C. Amano, Y. Ohiso and T. Kurokawa, "Using strained (AlxGa1-x)yIn1-yAszP1-z system materials to improve the performance of 850 nm surface-and edge-emitting lasers", Appl. Phys. Lett., vol. 71, no. 8, pp. 1002-1004, Aug. 1997.
  6. H. C. Kuo, Y. H. Chang, F. Y. Lai, T. H. Hseuh, L. T. Chu and S. C. Wang, "High speed performance of 850 nm silicon-implanted AlGaAs/GaAs vertical cavity emitting laser", Solid State Electron., vol. 48, no. 3, pp. 483-485, Mar. 2004.
  7. J. Ko, E. R. Hegblom, Y. Akulova, B. J. Thibeault and L. A. Coldren, "Low-threshold 840-nm laterally oxidized vertical-cavity lasers using AlInGaAs-AlGaAs strained active layers", IEEE Photon. Technol. Lett., vol. 9, no. 7, pp. 863-865, Jul. 1997.
  8. O. Tadanaga, K. Tateno, H. Uenohara, T. Kagawa and C. Amano, "An 850-nm InAlGaAs strained quantum-well vertical-cavity surface-emitting laser grown on GaAs (311)B substrate with high-polarization stability", IEEE Photon. Technol. Lett., vol. 12, no. 8, pp. 942-944, Aug. 2000.
  9. S. L. Yellen, R. G. Waters, A. H. Shepard, J. A. Baumann and R. J. Dalby, "Reliability of InAlGaAs strained-quantum-well lasers operating at 0.81 µm", IEEE Photon. Technol. Lett., vol. 4, no. 8, pp. 829-831, Aug. 1992.
  10. N. Tansu, D. Zhou and L. J. Mawst, "Low-temperature-sensitivity, compressively strained InGaAsP-active (\lambda = 0.78-0.85\ µm) region diode lasers", IEEE Photon. Technol. Lett., vol. 12, no. 6, pp. 603-605, Jun. 2000.
  11. L. J. Mawst, S. Rulsi, A. Al-Muhanna and J. K. Wade, "Short-wavelength (0.7\ µm < \lambda < 0.78\ µ m) high-power InGaAsP-active diode lasers", IEEE J. Sel. Topics Quantum Electron., vol. 5, no. 3, pp. 785-791, May/Jun. 1999.
  12. H. K. Choi and C. A. Wang, "InGaAs/AlGaAs strained single quantum well diode lasers with extremely low threshold current density and high efficiency", Appl. Phys. Lett., vol. 57, no. 4, pp. 321-323, Jul. 1990.
  13. T. R. Chen, B. Zhao, L. Eng, Y. H. Zhoung, J. O'Brien and A. Yariv, "Very high modulation efficiency of ultralow threshold current single quantum well InGaAs lasers", Electron. Lett., vol. 29, no. 17, pp. 1525-1526, Aug. 1993.
  14. N. Tansu and L. J. Mawst, "Compressively-strained InGaAsP-active (\lambda = 0.85 \ µm) VCSELs", in IEEE Lasers and Electro-Optics Society Annu. Meeting (LEOS), vol. 2, Rio Grande, PR, 2000, pp. 724-725.
  15. H. C. Kuo, Y. S. Chang, F. I. Lai and T. H. Hsueh, "High speed modulation of 850-nm InGaAsP/InGaP strain-compensated VCSELs", Electron. Lett., vol. 39, no. 14, pp. 1051-1052, Jul. 2003.
  16. Y. S. Chang, H. C. Kuo, F. I. Lai, Y. A. Chang, C. Y. Lu, L. W. Laih and S. C. Wang, "Fabrication and characteristics of high-speed oxide-confined VCSELs using InGaAsP-InGaP strain-compensated MQWs", J. Lightw. Technol., vol. 22, no. 12, pp. 2828-2833, Dec. 2004.
  17. H. K. Choi, C. A. Wang, D. F. Kolesar, R. L. Aggrawal and J. N. Walpole, "High-power, high-temperature operation of AlInGaAs-AlGaAs strained single-quantum-well diode lasers", IEEE Photon. Technol. Lett., vol. 3, no. 10, pp. 857-859, Oct. 1991.
  18. N. A. Hughes, J. C. Connolly, D. B. Gilbert and K. B. Murphy, "AlInGaAs/AlGaAs strained quantum-well ridge waveguide lasers grown by metal-organic chemical vapor deposition", IEEE Photon. Technol. Lett., vol. 4, no. 2, pp. 113-115, Feb. 1992.
  19. S. L. Chuang, "Efficient band-structure calculations of strained quantum wells", Phys. Rev. B, Condens. Matter, vol. 43, no. 12, pp. 9649-9661, Apr. 1991.
  20. I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan, "Band parameters for III-V compound semiconductors and their alloys", J. Appl. Phys., vol. 89, no. 11, pp. 5815-5875, Jun. 2001.
  21. S. Adachi, "Band gaps and refractive indices of AlGaAsSb, GaInAsSb and InPAsSb: Key properties for a variety of the 2-4 µm optoelectronic device applications", J. Appl. Phys., vol. 61, no. 10, pp. 4869-4876, May 1987.
  22. J. C. L. Yong, J. M. Rorison and I. H. White, "1.3-µm quantum-well InGaAsP, AlGaInAs and InGaAsN laser material gain: A theoretical study", IEEE J. Quantum Electron., vol. 38, no. 12, pp. 1553-1564, Dec. 2002.
  23. K. M. Lau, "Ultralow threshold quantum well lasers," in Quantum Well Laser, P. Zory, Ed. San Diego, CA: Academic, 1993.
  24. D. Ahn, S. L. Chuang and Y. C. Chang, "Valence-band mixing effects on the gain and the refractive index change of quantum-well lasers", J. Appl. Phys., vol. 64, no. 8, pp. 4056-4064, Oct. 1988.
  25. S. Seki, H. Oohashi, H. Sugiura, T. Hirono and K. Yokoyama, "Study on the dominant mechanisms for the temperature sensitivity of threshold current in 1.3 µm InP-based strained-layer quantum-well lasers", IEEE J. Quantum Electron., vol. 32, no. 8, pp. 1478-1486, Aug. 1996.
  26. J. W. Pan and J. I. Chyi, "Theoretical study of the temperature dependence of 1.3 µm AlGaInAs-InP multiple-quantum-well lasers", IEEE J. Quantum Electron., vol. 32, no. 12, pp. 2133-2138, Dec. 1996.
  27. G. B. Stringfellow and M. G. Craford, High Brightness Light Emitting Diodes, San Diego, CA: Academic, 1997.
  28. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matsushita and T. Mukai, "Blue InGaN-based laser diodes with an emission wavelength of 450 nm", Appl. Phys. Lett., vol. 76, no. 1, pp. 22-24, Jan. 2000.
  29. Y. K. Kuo and Y. A. Chang, "Effect of electronic current overflow and inhomogeneous carrier distribution on InGaN quantum well laser performance", IEEE J. Quantum Electron., vol. 40, no. 5, pp. 437-444, May 2004.

Other (29)

J. Gilor, I. Samid and D. Fekete, "Threshold current density reduction of strained AlInGaAs quantum-well laser", IEEE J. Quantum Electron., vol. 40, no. 10, pp. 1355-1364, Oct. 2004.

J. A. Lehman, R. A. Morgan, M. K. Hibbs-Brenner and D. Carlson, "High-frequency modulation characteristics of hybrid dielectric/AlGaAs mirror single-mode VCSELs", Electron. Lett., vol. 31, no. 15, pp. 1251-1252, Jul. 1995.

K. L. Lear, A. Mar, K. D. Choquette, S. P. Kilcoyne, R. P. Schneider Jr. and K. M. Geib, "High-frequency modulation of oxide confined vertical cavity surface emitting lasers", Electron. Lett., vol. 32, no. 5, pp. 457-458, Feb. 1996.

F. H. Peters and M. H. MacDougal, "High-speed high-temperature operation of vertical-cavity surface-emitting lasers", IEEE Photon. Technol. Lett., vol. 13, no. 7, pp. 645-647, Jul. 2001.

T. E. Sale, C. Amano, Y. Ohiso and T. Kurokawa, "Using strained (AlxGa1-x)yIn1-yAszP1-z system materials to improve the performance of 850 nm surface-and edge-emitting lasers", Appl. Phys. Lett., vol. 71, no. 8, pp. 1002-1004, Aug. 1997.

H. C. Kuo, Y. H. Chang, F. Y. Lai, T. H. Hseuh, L. T. Chu and S. C. Wang, "High speed performance of 850 nm silicon-implanted AlGaAs/GaAs vertical cavity emitting laser", Solid State Electron., vol. 48, no. 3, pp. 483-485, Mar. 2004.

J. Ko, E. R. Hegblom, Y. Akulova, B. J. Thibeault and L. A. Coldren, "Low-threshold 840-nm laterally oxidized vertical-cavity lasers using AlInGaAs-AlGaAs strained active layers", IEEE Photon. Technol. Lett., vol. 9, no. 7, pp. 863-865, Jul. 1997.

O. Tadanaga, K. Tateno, H. Uenohara, T. Kagawa and C. Amano, "An 850-nm InAlGaAs strained quantum-well vertical-cavity surface-emitting laser grown on GaAs (311)B substrate with high-polarization stability", IEEE Photon. Technol. Lett., vol. 12, no. 8, pp. 942-944, Aug. 2000.

S. L. Yellen, R. G. Waters, A. H. Shepard, J. A. Baumann and R. J. Dalby, "Reliability of InAlGaAs strained-quantum-well lasers operating at 0.81 µm", IEEE Photon. Technol. Lett., vol. 4, no. 8, pp. 829-831, Aug. 1992.

N. Tansu, D. Zhou and L. J. Mawst, "Low-temperature-sensitivity, compressively strained InGaAsP-active (\lambda = 0.78-0.85\ µm) region diode lasers", IEEE Photon. Technol. Lett., vol. 12, no. 6, pp. 603-605, Jun. 2000.

L. J. Mawst, S. Rulsi, A. Al-Muhanna and J. K. Wade, "Short-wavelength (0.7\ µm < \lambda < 0.78\ µ m) high-power InGaAsP-active diode lasers", IEEE J. Sel. Topics Quantum Electron., vol. 5, no. 3, pp. 785-791, May/Jun. 1999.

H. K. Choi and C. A. Wang, "InGaAs/AlGaAs strained single quantum well diode lasers with extremely low threshold current density and high efficiency", Appl. Phys. Lett., vol. 57, no. 4, pp. 321-323, Jul. 1990.

T. R. Chen, B. Zhao, L. Eng, Y. H. Zhoung, J. O'Brien and A. Yariv, "Very high modulation efficiency of ultralow threshold current single quantum well InGaAs lasers", Electron. Lett., vol. 29, no. 17, pp. 1525-1526, Aug. 1993.

N. Tansu and L. J. Mawst, "Compressively-strained InGaAsP-active (\lambda = 0.85 \ µm) VCSELs", in IEEE Lasers and Electro-Optics Society Annu. Meeting (LEOS), vol. 2, Rio Grande, PR, 2000, pp. 724-725.

H. C. Kuo, Y. S. Chang, F. I. Lai and T. H. Hsueh, "High speed modulation of 850-nm InGaAsP/InGaP strain-compensated VCSELs", Electron. Lett., vol. 39, no. 14, pp. 1051-1052, Jul. 2003.

Y. S. Chang, H. C. Kuo, F. I. Lai, Y. A. Chang, C. Y. Lu, L. W. Laih and S. C. Wang, "Fabrication and characteristics of high-speed oxide-confined VCSELs using InGaAsP-InGaP strain-compensated MQWs", J. Lightw. Technol., vol. 22, no. 12, pp. 2828-2833, Dec. 2004.

H. K. Choi, C. A. Wang, D. F. Kolesar, R. L. Aggrawal and J. N. Walpole, "High-power, high-temperature operation of AlInGaAs-AlGaAs strained single-quantum-well diode lasers", IEEE Photon. Technol. Lett., vol. 3, no. 10, pp. 857-859, Oct. 1991.

N. A. Hughes, J. C. Connolly, D. B. Gilbert and K. B. Murphy, "AlInGaAs/AlGaAs strained quantum-well ridge waveguide lasers grown by metal-organic chemical vapor deposition", IEEE Photon. Technol. Lett., vol. 4, no. 2, pp. 113-115, Feb. 1992.

S. L. Chuang, "Efficient band-structure calculations of strained quantum wells", Phys. Rev. B, Condens. Matter, vol. 43, no. 12, pp. 9649-9661, Apr. 1991.

I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan, "Band parameters for III-V compound semiconductors and their alloys", J. Appl. Phys., vol. 89, no. 11, pp. 5815-5875, Jun. 2001.

S. Adachi, "Band gaps and refractive indices of AlGaAsSb, GaInAsSb and InPAsSb: Key properties for a variety of the 2-4 µm optoelectronic device applications", J. Appl. Phys., vol. 61, no. 10, pp. 4869-4876, May 1987.

J. C. L. Yong, J. M. Rorison and I. H. White, "1.3-µm quantum-well InGaAsP, AlGaInAs and InGaAsN laser material gain: A theoretical study", IEEE J. Quantum Electron., vol. 38, no. 12, pp. 1553-1564, Dec. 2002.

K. M. Lau, "Ultralow threshold quantum well lasers," in Quantum Well Laser, P. Zory, Ed. San Diego, CA: Academic, 1993.

D. Ahn, S. L. Chuang and Y. C. Chang, "Valence-band mixing effects on the gain and the refractive index change of quantum-well lasers", J. Appl. Phys., vol. 64, no. 8, pp. 4056-4064, Oct. 1988.

S. Seki, H. Oohashi, H. Sugiura, T. Hirono and K. Yokoyama, "Study on the dominant mechanisms for the temperature sensitivity of threshold current in 1.3 µm InP-based strained-layer quantum-well lasers", IEEE J. Quantum Electron., vol. 32, no. 8, pp. 1478-1486, Aug. 1996.

J. W. Pan and J. I. Chyi, "Theoretical study of the temperature dependence of 1.3 µm AlGaInAs-InP multiple-quantum-well lasers", IEEE J. Quantum Electron., vol. 32, no. 12, pp. 2133-2138, Dec. 1996.

G. B. Stringfellow and M. G. Craford, High Brightness Light Emitting Diodes, San Diego, CA: Academic, 1997.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matsushita and T. Mukai, "Blue InGaN-based laser diodes with an emission wavelength of 450 nm", Appl. Phys. Lett., vol. 76, no. 1, pp. 22-24, Jan. 2000.

Y. K. Kuo and Y. A. Chang, "Effect of electronic current overflow and inhomogeneous carrier distribution on InGaN quantum well laser performance", IEEE J. Quantum Electron., vol. 40, no. 5, pp. 437-444, May 2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.