Abstract

The authors have fabricated transverse electric (TE) mode InGaAsP/InP active waveguide optical isolators based on the nonreciprocal loss shift and demonstrated improved TE mode isolation ratio of 14.7 dB/mm with reduced insertion loss at a wavelength of 1550 nm for monolithically integrable optical isolators. The wavelength dependence of the isolation ratio and the propagation loss were also measured. An isolation ratio greater than 10 dB/mm was realized over the entire wavelength range of 1530-1560 nm. These results lead to the monolithic integration of semiconductor waveguide optical isolators with edge-emitting semiconductor lasers and highly functional photonic integrated circuits with many cascaded optical devices.

© 2006 IEEE

PDF Article

References

  • View by:
  • |

  1. K. Ando, T. Okoshi and N. Koshizuka, "Waveguide magneto-optic isolator fabricated by laser annealing", Appl. Phys. Lett., vol. 53, no. 1, pp. 4-6, May 1988.
  2. T. Shintaku, "Integrated optical isolator based on efficient nonreciprocal radiation mode conversion", Appl. Phys. Lett., vol. 73, no. 14, pp. 1946-1948, Oct. 1998.
  3. M. Levy, R. M. Osgood Jr., H. Hegde, F. J. Cadieu and V. J. Fratello, "Integrated optical isolators with sputter-deposited thin-film magnets", IEEE Photon. Technol. Lett., vol. 8, no. 7, pp. 903-905, Jul. 1996.
  4. H. Yokoi, T. Mizumoto, T. Takano and N. Shinjo, "Demonstration of an optical isolator by use of a nonreciprocal phase shift", Appl. Opt., vol. 38, no. 36, pp. 7409-7413, Dec. 1999.
  5. J. Fujita, M. Levy, R. M. Osgood Jr., L. Wilkens and H. Dotsch, "Waveguide optical isolator based on Mach-Zehnder interferometer", Appl. Phys. Lett., vol. 76, no. 16, pp. 2158-2160, Apr. 2000.
  6. H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi and Y. Nakano, "Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift", Appl. Opt., vol. 39, no. 33, pp. 6158-6164, Nov. 2000.
  7. M. Takenaka and Y. Nakano, "Proposal of a novel semiconductor optical waveguide isolator", in Proc. 11th Int. Conf. Indium Phosphide and Related Materials, Davos, Switzerland, 1999, pp. 289-292.
  8. W. Zaets and K. Ando, "Optical waveguide isolator based on nonreciprocal loss/gain of amplifier covered by ferromagnetic layer", IEEE Photon. Technol. Lett., vol. 11, no. 8, pp. 1012-1014, Aug. 1999.
  9. H. Shimizu and M. Tanaka, "Design of semiconductor-waveguide-type optical isolators using the nonreciprocal loss/gain in the magneto-optical waveguides having MnAs nanoclusters", Appl. Phys. Lett., vol. 81, no. 27, pp. 5248-5250, Dec. 2002.
  10. H. Shimizu and Y. Nakano, "First demonstration of TE mode nonreciprocal propagation in an InGaAsP/InP active waveguide for an integratable optical isolator", Jpn. J. Appl. Phys., vol. 43, no. 12A, pp. L1561-L1563, 2004.
  11. M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens and L. Lagae, "Experimental demonstration of nonreciprocal amplified spontaneous emission in a CoFe clad semiconductor optical amplifier for use as an integrated optical isolator", Appl. Phys. Lett., vol. 85, no. 18, pp. 3980-3982, Nov. 2004.
  12. W. V. Parys, M. Vanwolleghem, D. V. Thourhout, R. Baets, J. Decobert, B. Dagens, B. Thedrez, L. Lagae and R. Wirix-Speetjens, "Demonstration of 81 dB/cm isolation on an InP-based optical waveguide isolator", in Proc. 12th Eur. Conf. Integrated Optics, Grenoble, France, 2005,WeA1-2,. pp. 33-36.
  13. V. Zayets and K. Ando, "Isolation effect in ferromagnetic-metal/semiconductor hybrid optical waveguide", Appl. Phys. Lett., vol. 86, no. 26, p. 261105, Jun. 2005.
  14. T. Amemiya, H. Shimizu and Y. Nakano, "TM mode waveguide optical isolator based on the nonreciprocal loss shift", in 17th Int. Conf. Indium Phosphide and Related Materials, Glasgow, U.K., 2005,TP-41,. pp. 303-306.
  15. P. M. Morse and H. Feshbach, Method of Theoretical Physics, New York: McGraw-Hill, 1953.
  16. P. B. Johnson and R. W. Christy, "Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni and Pd", Phys. Rev. B, Condens. Matter, vol. 9, no. 12, pp. 5056-5070, Jun. 1974.
  17. G. S. Krinchik and V. A. Artemjev, "Magneto-optic properties of nickel, iron and cobalt", J. Appl. Phys., vol. 39, no. 2, pp. 1276-1278, Feb. 1968.

Other (17)

K. Ando, T. Okoshi and N. Koshizuka, "Waveguide magneto-optic isolator fabricated by laser annealing", Appl. Phys. Lett., vol. 53, no. 1, pp. 4-6, May 1988.

T. Shintaku, "Integrated optical isolator based on efficient nonreciprocal radiation mode conversion", Appl. Phys. Lett., vol. 73, no. 14, pp. 1946-1948, Oct. 1998.

M. Levy, R. M. Osgood Jr., H. Hegde, F. J. Cadieu and V. J. Fratello, "Integrated optical isolators with sputter-deposited thin-film magnets", IEEE Photon. Technol. Lett., vol. 8, no. 7, pp. 903-905, Jul. 1996.

H. Yokoi, T. Mizumoto, T. Takano and N. Shinjo, "Demonstration of an optical isolator by use of a nonreciprocal phase shift", Appl. Opt., vol. 38, no. 36, pp. 7409-7413, Dec. 1999.

J. Fujita, M. Levy, R. M. Osgood Jr., L. Wilkens and H. Dotsch, "Waveguide optical isolator based on Mach-Zehnder interferometer", Appl. Phys. Lett., vol. 76, no. 16, pp. 2158-2160, Apr. 2000.

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi and Y. Nakano, "Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift", Appl. Opt., vol. 39, no. 33, pp. 6158-6164, Nov. 2000.

M. Takenaka and Y. Nakano, "Proposal of a novel semiconductor optical waveguide isolator", in Proc. 11th Int. Conf. Indium Phosphide and Related Materials, Davos, Switzerland, 1999, pp. 289-292.

W. Zaets and K. Ando, "Optical waveguide isolator based on nonreciprocal loss/gain of amplifier covered by ferromagnetic layer", IEEE Photon. Technol. Lett., vol. 11, no. 8, pp. 1012-1014, Aug. 1999.

H. Shimizu and M. Tanaka, "Design of semiconductor-waveguide-type optical isolators using the nonreciprocal loss/gain in the magneto-optical waveguides having MnAs nanoclusters", Appl. Phys. Lett., vol. 81, no. 27, pp. 5248-5250, Dec. 2002.

H. Shimizu and Y. Nakano, "First demonstration of TE mode nonreciprocal propagation in an InGaAsP/InP active waveguide for an integratable optical isolator", Jpn. J. Appl. Phys., vol. 43, no. 12A, pp. L1561-L1563, 2004.

M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens and L. Lagae, "Experimental demonstration of nonreciprocal amplified spontaneous emission in a CoFe clad semiconductor optical amplifier for use as an integrated optical isolator", Appl. Phys. Lett., vol. 85, no. 18, pp. 3980-3982, Nov. 2004.

W. V. Parys, M. Vanwolleghem, D. V. Thourhout, R. Baets, J. Decobert, B. Dagens, B. Thedrez, L. Lagae and R. Wirix-Speetjens, "Demonstration of 81 dB/cm isolation on an InP-based optical waveguide isolator", in Proc. 12th Eur. Conf. Integrated Optics, Grenoble, France, 2005,WeA1-2,. pp. 33-36.

V. Zayets and K. Ando, "Isolation effect in ferromagnetic-metal/semiconductor hybrid optical waveguide", Appl. Phys. Lett., vol. 86, no. 26, p. 261105, Jun. 2005.

T. Amemiya, H. Shimizu and Y. Nakano, "TM mode waveguide optical isolator based on the nonreciprocal loss shift", in 17th Int. Conf. Indium Phosphide and Related Materials, Glasgow, U.K., 2005,TP-41,. pp. 303-306.

P. M. Morse and H. Feshbach, Method of Theoretical Physics, New York: McGraw-Hill, 1953.

P. B. Johnson and R. W. Christy, "Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni and Pd", Phys. Rev. B, Condens. Matter, vol. 9, no. 12, pp. 5056-5070, Jun. 1974.

G. S. Krinchik and V. A. Artemjev, "Magneto-optic properties of nickel, iron and cobalt", J. Appl. Phys., vol. 39, no. 2, pp. 1276-1278, Feb. 1968.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.