Abstract

The physical layer scalability of a packet-switched optical interconnection network utilizing semiconductor optical amplifier (SOA) switch elements is investigated experimentally and with numerical modeling. Optical packets containing payloads of multiple wavelength-division-multiplexing (WDM) channels are propagated through cascaded SOA-based switching nodes in a recirculating test-bed environment. Experiments show that bit-error rates (BERs) below 10-9 can be maintained through 58 switching nodes for the entire eight-channel 10-Gb/s-per-channel payload distributed over 24.2 nm of the C-band. When the packet payload consists of a single 10-Gb/s channel, 98 node hops can be traversed before a BER of 10-9 is exceeded. In conjunction with the experiments, a novel phenomenological modeling technique is developed in order to forecast the scalability of SOA-based WDM packet interconnection networks. This technique is shown to yield results that correlate well with the experimental data. These investigations are presented as predictors of the physical limitations of large-scale WDM packet-switched networks.

© 2006 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription