Abstract

The unique and practical benefits of the use of bismuth-oxide-based nonlinear fiber (Bi-NLF) in implementing a four-wave-mixing (FWM)-based wavelength converter for fiber-optic-communication-system applications are experimentally demonstrated. First, the Kerr-nonlinearity and stimulated-Brillouin-scattering (SBS) characteristics of our fabricated Bi-NLF are experimentally investigated. The Bi-NLF is found to have the superior advantage of a significantly high SBS threshold in addition to its ultrahigh Kerr nonlinearity \gamma of \sim 1100 W<sup>-1</sup> · km<sup>-1</sup>, compared to the conventional silica-based highly nonlinear fiber. Next, the authors perform an experiment for the FWM-based wavelength conversion of a non-return-to-zero (NRZ) signal within a 40-cm length of the Bi-NLF fusion spliced to standard silica fibers by using a continuous-wave (CW) high-power pump beam. Error-free tunable wavelength conversion over a 10-nm bandwidth is readily achieved. No SBS-suppression scheme is employed for the pump due to the high SBS threshold, which simplifies the system configuration and improves the quality of the wavelength-converted signal.

© 2006 IEEE

PDF Article

References

  • View by:
  • |

  1. J. H. Lee, "All-optical signal processing devices based on holey fibers", IEICE Trans. Electron., vol. E88-C, no. 3, pp. 327-334, Mar. 2005.
  2. K. Uesaka, K. K.-Y. Wong, M. E. Marhic and L. G. Kazovsky, "Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments", IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 3, pp. 560-568, May/Jun. 2002.
  3. J. Li, B.-E. Olsson, M. Karsson and P. A. Andrekson, "OTDM demultiplexer based on XPM-induced wavelength shifting in highly nonlinear fiber", IEEE Photon. Technol. Lett., vol. 15, no. 12, pp. 1770-1772, Dec. 2003.
  4. J. H. Lee, P. C. Teh, P. Petropoulos, M. Ibsen and D. J. Richardson, "Reduction of interchannel interference noise in a two-channel grating based OCDMA system using a nonlinear optical loop mirror", IEEE Photon. Technol. Lett., vol. 13, no. 5, pp. 529-531, May 2001.
  5. T. Sakamoto, S. Koji, K. Taira, N. S. Moon and K. Kikuchi, "Polarization-insensitive all-optical time-division demultiplexing using a fiber four-wave mixer with a peak-holding optical phase-locked loop", IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 563-565, Feb. 2004.
  6. P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect", in Proc. Eur. Conf. Optical Communication (ECOC), vol. 1, Madrid, Spain,Sep. 1998, pp. 475-476.
  7. N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira and K. Kikuchi, "Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1... km-1", presented at the Optical Fiber Communications Conf. (OFC), Anaheim, CA, Postdeadline Paper PDP26, Mar. 2004.
  8. T. M. Monro, K. M. Kiang, J. H. Lee, K. Frampton, Z. Yusoff, R. Moore, J. Tucknott, D. W. Hewak, H. N. Rutt and D. J. Richardson, "High nonlinearity extruded single-mode holey optical fibers", in Proc. Optical Fiber Communications Conf. (OFC), Anaheim, CA, Mar. 2002, pp. FA1-1-FA1-3.
  9. J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro and D. J. Richardson, "Four-wave mixing based, 10 Gb/s tuneable wavelength conversion using a holey fiber with a high SBS threshold", IEEE Photon. Technol. Lett., vol. 15, no. 3, pp. 440-442, Mar. 2003.
  10. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. New York: Academic, 1995, p. 42.
  11. T. Okuno, M. Tanaka, M. Hirano, T. Kato, M. Shigematsu and M. Onishi, "Highly nonlinear and perfectly dispersion-flattened fibers for quasi-tunable wavelength conversion", in Proc. Eur. Conf. Optical Communication (ECOC), vol. 3, Rimini, Italy, 2003, pp. 614-615.
  12. J. H. Lee, T. Tanemura, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto and K. Kikuchi, "Use of 1-m Bi2O3 nonlinear fiber for 160-Gb/s optical-time division demultiplexing based on polarization rotation and wavelength shift induced by cross-phase modulation", Opt. Lett., vol. 30, no. 11, pp. 1267-1269, Jun. 2005.
  13. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto and K. Kikuchi, "All-fiber based 80-Gb/s wavelength converter using 1-m long bismuth nonlinear optical fiber with a nonlinearity \gamma of 1100 W-1 ... km-1", Opt. Express, vol. 13, no. 8, pp. 3144-3149, Apr. 2005.
  14. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto and K. Kikuchi, "Wavelength conversion of 160 Gb/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre", Electron. Lett., vol. 41, no. 16, pp. 918-919, Aug. 2005.
  15. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto and K. Kikuchi, "All fiber-based 160-Gb/s add/drop multiplexer incorporating a 1-m-long bismuth oxide-based ultra-high nonlinearity fiber", Opt. Express, vol. 13, no. 18, pp. 6864-6869, Sep. 2005.
  16. B.-E. Olsson, P. Ohlen, L. Rau and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering", IEEE Photon. Technol. Lett., vol. 12, no. 7, pp. 846-848, Jul. 2000.
  17. O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki and S. Namiki, "Broadband four-wave mixing generation in short optical fibre", Electron. Lett., vol. 36, no. 8, pp. 709-711, Apr. 2000.
  18. K. K. Chow, C. Shu, C. Lin and A. Bjarklev, "Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber", IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 624-626, Mar. 2005.
  19. J. Hansryd, F. Dross, M. Westlund, P. A. Antrekson and S. N. Knudsen, "Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution", J. Lightw. Technol., vol. 19, no. 11, pp. 1691-1697, Nov. 2001.
  20. K. K. Y. Wong, K. Shimizu, M. E. Marhic, K. Uesaka, G. Kalogerakis and L. G. Kazovsky, "Continuous-wave fiber optical parametric wavelength converter with + 40-dB conversion efficiency and a 3.8-dB noise figure", Opt. Lett., vol. 28, no. 9, pp. 692-694, May 2003.
  21. M. Tateda, N. Shibata and S. Seikai, "Interferometric method for chromatic dispersion measurement in a single-mode optical fiber", IEEE J. Quantum. Electron., vol. QE-17, no. 3, pp. 404-407, Mar. 1981.
  22. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen and O. A. Levring, "Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 µm", Opt. Lett., vol. 21, no. 24, pp. 1966-1968, Dec. 1996.
  23. T. Tanemura, Y. Takushima and K. Kikuchi, "Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber", Opt. Lett., vol. 27, no. 7, pp. 1552-1554, Sep. 2002.
  24. A. Yeniay, J.-M. Delavaux and J. Toulouse, "Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers", J. Lightw. Technol., vol. 20, no. 8, pp. 1425-1432, Aug. 2002.
  25. R. G. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering", Appl. Opt., vol. 11, no. 11, pp. 2489-2494, Nov. 1972.
  26. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson and T. M. Monro, "Bismuth glass holey fibers with high nonlinearity", Opt. Express, vol. 12, no. 21, pp. 5082-5087, Oct. 2004.
  27. S. B. Cavalcanti, G. P. Agrawal and M. Yu, "Noise amplification in dispersive nonlinear media", Phys. Rev. A, Gen. Phys., vol. 51, no. 5, pp. 4086-4092, May 1995.
  28. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto and K. Kikuchi, "Four-wave mixing based wavelength conversion of 40-Gb/s non-return-to-zero signal using 40-cm bismuth nonlinear optical fiber", IEEE Photon. Technol. Lett., vol. 17, no. 7, pp. 1474-1476, Jul. 2005.

Other (28)

J. H. Lee, "All-optical signal processing devices based on holey fibers", IEICE Trans. Electron., vol. E88-C, no. 3, pp. 327-334, Mar. 2005.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic and L. G. Kazovsky, "Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments", IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 3, pp. 560-568, May/Jun. 2002.

J. Li, B.-E. Olsson, M. Karsson and P. A. Andrekson, "OTDM demultiplexer based on XPM-induced wavelength shifting in highly nonlinear fiber", IEEE Photon. Technol. Lett., vol. 15, no. 12, pp. 1770-1772, Dec. 2003.

J. H. Lee, P. C. Teh, P. Petropoulos, M. Ibsen and D. J. Richardson, "Reduction of interchannel interference noise in a two-channel grating based OCDMA system using a nonlinear optical loop mirror", IEEE Photon. Technol. Lett., vol. 13, no. 5, pp. 529-531, May 2001.

T. Sakamoto, S. Koji, K. Taira, N. S. Moon and K. Kikuchi, "Polarization-insensitive all-optical time-division demultiplexing using a fiber four-wave mixer with a peak-holding optical phase-locked loop", IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 563-565, Feb. 2004.

P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect", in Proc. Eur. Conf. Optical Communication (ECOC), vol. 1, Madrid, Spain,Sep. 1998, pp. 475-476.

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira and K. Kikuchi, "Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1... km-1", presented at the Optical Fiber Communications Conf. (OFC), Anaheim, CA, Postdeadline Paper PDP26, Mar. 2004.

T. M. Monro, K. M. Kiang, J. H. Lee, K. Frampton, Z. Yusoff, R. Moore, J. Tucknott, D. W. Hewak, H. N. Rutt and D. J. Richardson, "High nonlinearity extruded single-mode holey optical fibers", in Proc. Optical Fiber Communications Conf. (OFC), Anaheim, CA, Mar. 2002, pp. FA1-1-FA1-3.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro and D. J. Richardson, "Four-wave mixing based, 10 Gb/s tuneable wavelength conversion using a holey fiber with a high SBS threshold", IEEE Photon. Technol. Lett., vol. 15, no. 3, pp. 440-442, Mar. 2003.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. New York: Academic, 1995, p. 42.

T. Okuno, M. Tanaka, M. Hirano, T. Kato, M. Shigematsu and M. Onishi, "Highly nonlinear and perfectly dispersion-flattened fibers for quasi-tunable wavelength conversion", in Proc. Eur. Conf. Optical Communication (ECOC), vol. 3, Rimini, Italy, 2003, pp. 614-615.

J. H. Lee, T. Tanemura, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto and K. Kikuchi, "Use of 1-m Bi2O3 nonlinear fiber for 160-Gb/s optical-time division demultiplexing based on polarization rotation and wavelength shift induced by cross-phase modulation", Opt. Lett., vol. 30, no. 11, pp. 1267-1269, Jun. 2005.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto and K. Kikuchi, "All-fiber based 80-Gb/s wavelength converter using 1-m long bismuth nonlinear optical fiber with a nonlinearity \gamma of 1100 W-1 ... km-1", Opt. Express, vol. 13, no. 8, pp. 3144-3149, Apr. 2005.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto and K. Kikuchi, "Wavelength conversion of 160 Gb/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre", Electron. Lett., vol. 41, no. 16, pp. 918-919, Aug. 2005.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto and K. Kikuchi, "All fiber-based 160-Gb/s add/drop multiplexer incorporating a 1-m-long bismuth oxide-based ultra-high nonlinearity fiber", Opt. Express, vol. 13, no. 18, pp. 6864-6869, Sep. 2005.

B.-E. Olsson, P. Ohlen, L. Rau and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering", IEEE Photon. Technol. Lett., vol. 12, no. 7, pp. 846-848, Jul. 2000.

O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki and S. Namiki, "Broadband four-wave mixing generation in short optical fibre", Electron. Lett., vol. 36, no. 8, pp. 709-711, Apr. 2000.

K. K. Chow, C. Shu, C. Lin and A. Bjarklev, "Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber", IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 624-626, Mar. 2005.

J. Hansryd, F. Dross, M. Westlund, P. A. Antrekson and S. N. Knudsen, "Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution", J. Lightw. Technol., vol. 19, no. 11, pp. 1691-1697, Nov. 2001.

K. K. Y. Wong, K. Shimizu, M. E. Marhic, K. Uesaka, G. Kalogerakis and L. G. Kazovsky, "Continuous-wave fiber optical parametric wavelength converter with + 40-dB conversion efficiency and a 3.8-dB noise figure", Opt. Lett., vol. 28, no. 9, pp. 692-694, May 2003.

M. Tateda, N. Shibata and S. Seikai, "Interferometric method for chromatic dispersion measurement in a single-mode optical fiber", IEEE J. Quantum. Electron., vol. QE-17, no. 3, pp. 404-407, Mar. 1981.

A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen and O. A. Levring, "Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 µm", Opt. Lett., vol. 21, no. 24, pp. 1966-1968, Dec. 1996.

T. Tanemura, Y. Takushima and K. Kikuchi, "Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber", Opt. Lett., vol. 27, no. 7, pp. 1552-1554, Sep. 2002.

A. Yeniay, J.-M. Delavaux and J. Toulouse, "Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers", J. Lightw. Technol., vol. 20, no. 8, pp. 1425-1432, Aug. 2002.

R. G. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering", Appl. Opt., vol. 11, no. 11, pp. 2489-2494, Nov. 1972.

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson and T. M. Monro, "Bismuth glass holey fibers with high nonlinearity", Opt. Express, vol. 12, no. 21, pp. 5082-5087, Oct. 2004.

S. B. Cavalcanti, G. P. Agrawal and M. Yu, "Noise amplification in dispersive nonlinear media", Phys. Rev. A, Gen. Phys., vol. 51, no. 5, pp. 4086-4092, May 1995.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto and K. Kikuchi, "Four-wave mixing based wavelength conversion of 40-Gb/s non-return-to-zero signal using 40-cm bismuth nonlinear optical fiber", IEEE Photon. Technol. Lett., vol. 17, no. 7, pp. 1474-1476, Jul. 2005.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.