Abstract

In this paper, we propose an approach to generate and distribute two wide bands of continuously tunable millimeter-wave (mm-wave) signals using an optical phase modulator and a fixed optical notch filter. We demonstrate theoretically that the odd-order electrical harmonics are cancelled and even-order electrical harmonics are generated at the output of a photodetector when the optical carrier is filtered out from the phase-modulated optical spectrum. Analysis shows that dispersion compensation is required in order to maintain the suppression of the odd-order electrical harmonics, in order to eliminate signal fading of the generated electrical signal when the optical signal is distributed using conventional single-mode optical fiber. It is experimentally demonstrated that, when the electrical drive signal is tuned from 18.8-25 GHz, two bands of mm-wave signals from 37.6 to 50 GHz and from 75.2 to 100 GHz with high signal quality are generated locally and remotely. This approach does not suffer from the direct current (dc) bias-drifting problem observed when an optical intensity modulator is used.

© 2005 IEEE

PDF Article

References

  • View by:
  • |

  1. R. P. Braun, G. Grosskopf, D. Rohde and F. Schmidt, "Optical millimetre-wave generation and transmission experiments for mobile 60 GHz band communications", Electron. Lett., vol. 32, no. 7, pp. 626-628, Mar. <day>28</day>, 1996.
  2. H. Schmuck, "Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion", Electron. Lett., vol. 31, no. 21, pp. 1848-1849, Oct. <day>12</day>, 1995.
  3. U. Gliese, S. Norskov and T. N. Nielsen, "Chromatic dispersion in fiber-optic microwave and millimeter-wave links", IEEE Trans. Microw. Theory Tech., vol. 44, no. 10, pp. 1716-1724, Oct. 1996.
  4. G. Qi, J. Yao, J. Seregelyi, S. Paquet and J. C. Bélisle, "Phase noise analysis of the optically generated and distributed millimeter wave signal using an external optical modulator", in Photonics North, vol. 5579C, Montreal, QC, Canada,Sep. 2004, pp. 598-606.
  5. L. Goldberg, H. F. Taylor, J. F. Weller and D. M. Bloom, "Microwave signal generation with injection-locked laser diodes", Electron. Lett., vol. 19, no. 13, pp. 491-493, Jun. <day>23</day>, 1983.
  6. R. T. Ramos and A. J. Seeds, "Fast heterodyne optical phase lock loop using double quantum well laser diodes", Electron. Lett., vol. 28, no. 1, pp. 82-83, Jan. <day>2</day>, 1992.
  7. J. J. O'Reilly, P. M. Lane, R. Heidemann and R. Hofstetter, "Optical generation of very narrow linewidth millimetre wave signals", Electron. Lett., vol. 28, no. 25, pp. 2309-2311, Dec. <day>3</day>, 1992.
  8. J. J. O'Reilly and P. M. Lane, "Fibre-supported optical generation and delivery of 60 GHz signals", Electron. Lett., vol. 30, no. 16, pp. 1329-1330, Aug. <day>4</day>, 1994.
  9. P. Shen, N. J. Gomes, P. A. Davies, W. P. Shillue, P. G. Huggard and B. N. Ellison, "High-purity millimetre-wave photonic local oscillator generation and delivery", in Proc. Int. Topical Meeting Microwave Photonics, Budapest, Hungary,Sep. <day>10-12</day> 2003, pp. 189-192.
  10. K. Okamoto, Fundamentals of Optical Waveguides, New York: Academic, 2000, p. 72.
  11. W. K. Marshall, B. Crosignani and A. Yariv, "Laser phase noise to intensity noise conversion by lowest-order group-velocity dispersion in optical fiber: Exact theory", Opt. Lett., vol. 25, no. 3, pp. 165-167, 2000.

Other (11)

R. P. Braun, G. Grosskopf, D. Rohde and F. Schmidt, "Optical millimetre-wave generation and transmission experiments for mobile 60 GHz band communications", Electron. Lett., vol. 32, no. 7, pp. 626-628, Mar. <day>28</day>, 1996.

H. Schmuck, "Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion", Electron. Lett., vol. 31, no. 21, pp. 1848-1849, Oct. <day>12</day>, 1995.

U. Gliese, S. Norskov and T. N. Nielsen, "Chromatic dispersion in fiber-optic microwave and millimeter-wave links", IEEE Trans. Microw. Theory Tech., vol. 44, no. 10, pp. 1716-1724, Oct. 1996.

G. Qi, J. Yao, J. Seregelyi, S. Paquet and J. C. Bélisle, "Phase noise analysis of the optically generated and distributed millimeter wave signal using an external optical modulator", in Photonics North, vol. 5579C, Montreal, QC, Canada,Sep. 2004, pp. 598-606.

L. Goldberg, H. F. Taylor, J. F. Weller and D. M. Bloom, "Microwave signal generation with injection-locked laser diodes", Electron. Lett., vol. 19, no. 13, pp. 491-493, Jun. <day>23</day>, 1983.

R. T. Ramos and A. J. Seeds, "Fast heterodyne optical phase lock loop using double quantum well laser diodes", Electron. Lett., vol. 28, no. 1, pp. 82-83, Jan. <day>2</day>, 1992.

J. J. O'Reilly, P. M. Lane, R. Heidemann and R. Hofstetter, "Optical generation of very narrow linewidth millimetre wave signals", Electron. Lett., vol. 28, no. 25, pp. 2309-2311, Dec. <day>3</day>, 1992.

J. J. O'Reilly and P. M. Lane, "Fibre-supported optical generation and delivery of 60 GHz signals", Electron. Lett., vol. 30, no. 16, pp. 1329-1330, Aug. <day>4</day>, 1994.

P. Shen, N. J. Gomes, P. A. Davies, W. P. Shillue, P. G. Huggard and B. N. Ellison, "High-purity millimetre-wave photonic local oscillator generation and delivery", in Proc. Int. Topical Meeting Microwave Photonics, Budapest, Hungary,Sep. <day>10-12</day> 2003, pp. 189-192.

K. Okamoto, Fundamentals of Optical Waveguides, New York: Academic, 2000, p. 72.

W. K. Marshall, B. Crosignani and A. Yariv, "Laser phase noise to intensity noise conversion by lowest-order group-velocity dispersion in optical fiber: Exact theory", Opt. Lett., vol. 25, no. 3, pp. 165-167, 2000.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.