Abstract

In this paper, we study experimentally and numerically simultaneous time-domain add-drop multiplexing for high-speed optical time-division multiplexing (OTDM) networks based on cross-phase-modulation (XPM)-induced wavelength shifting in a 50-m highly nonlinear fiber. This scheme needs only a single-channel clock rate and does not alter the input signal wavelength. Simultaneous add and drop operations at 80 Gb/s have been demonstrated experimentally with less than 1-dB power penalty for the dropped channel and no distinct bit-error-rate (BER) degradation for the added channel. Numerical simulations show that the experimental results are only limited by the available signal pulsewidth, and simultaneous add-drop multiplexing at 160-Gb/s or higher bit rates is possible with this scheme by employing control and signal pulses with proper pulsewidths.

© 2005 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription