G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. New York: Academic, 2001.

A. Hasegawa, M. Matsumoto and P. I. Kattan, Optical Solitons in Fibers, 3rd ed. New York: Springer-Verlag, 2000.

M. Brandt-Pearce, I. Jacobs and J. K. Shaw, "Optimal input Gaussian pulse width for transmission in dispersive nonlinear fiber", J. Opt. Soc. Amer. B, vol. 16, no. 8, pp. 1189-1196, 1999.

V. Sinkin, R. Holzlohner, J. Zweck and C. R. Menyuk, "Optimization of the split-step Fourier method in modeling optical-fiber communication systems", J. Lightw. Technol., vol. 21, no. 1, pp. 61-68, Jan. 2003.

Q. Chang, E. Jia and W. Suny, "Difference schemes for solving the generalized nonlinear Schrodinger equation", J. Comput. Phys., vol. 148, no. 2, pp. 397-415, 1999.

L. R. Watkins, "Modeling propagating in optical fibers using wavelets", J. Lightw. Technol., vol. 12, no. 9, pp. 1536-1542, Dec. 1994.

G. Bosco, A. Carena, V. Curri, R. Gaudino, P. Poggiolini and S. Bendedetto, "Suppression of spurious tones induced by the split-step method in fiber systems simulation", IEEE Photon. Technol. Lett., vol. 12, no. 5, pp. 489-491, May 2000.

X. Liu and B. Lee, "A fast method for nonlinear Schrodinger equation", IEEE Photon. Technol. Lett., vol. 15, no. 11, pp. 1549-1551, Nov. 2003.

B. Fornberg and T. A. Driscoll, "A fast spectral algorithm for nonlinear wave equations with linear dispersion", J. Comput. Phys., vol. 155, no. 2, pp. 456-467, 1999.

C. De Boor, A Practical Guide to Splines, New York: Springer-Verlag, 2001.

Y. Saad, "Analysis of some Krylov approximation to the matrix exponential operator", SIAM J. Numer. Anal., vol. 29, no. 1, pp. 209-228, 1992.

C. Moler and C. Van Loan, "Nineteen dubious ways to compute the exponential of a matrix, twenty five years later", SIAM Rev., vol. 45, no. 1, pp. 3-49, 2003.

T. Blu, P. Thevenaz and M. Unser, "MOMS: Maximal-order interpolation of minimal support", IEEE Trans. Image Process., vol. 10, no. 7, pp. 1069-1080, Jul. 2001.

W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes in C++: The Art of Scientific Computing, 2nd ed. London: U.K.: Cambridge Univ. Press, 2002.

I. J. Schoenberg, Cardinal Spline Interpolation, Philadelphia, PA: SIAM, 1973,vol. 12.

A. Sommerfeld, "Eine besonders anschauliche Ableitung des Gaussischen Fehlergesetzes," in Festschrift Ludwig Boltzmann Gewidmet Zum 60. Geburtstage, Leipzig: Germany: Barth, Feb. 1904, pp. 848-859.

G. Polya, "Berechnung eines bestimmten integrals", Math. Ann., vol. 74, no. 20, pp. 204-212, 1913.

R. Bartels, J. Beatty and B. Barsky, An Introduction to Splines for Use in Computer Graphics and Geometric Modeling, San Mateo, CA: Morgan Kaufmann, 1987.

E. Cohen, R. F. Riesenfeld and G. Elber, Geometric Modeling with Splines: An Introduction, Natick, MA: A.K. Peters Ltd., 2001.

M. Unser, A. Aldroubi and M. Eden, "B-spline signal processing-Part I: Theory", IEEE Trans. Signal Process., vol. 41, no. 2, pp. 821-833, Feb. 1993.

M. Unser, "Splines: A perfect fit for signal and image processing", IEEE Signal Process. Mag., vol. 16, no. 6, pp. 22-38, Nov. 1999.

M. Premaratne, "Split step spline method for modelling optical fibre communications systems", IEEE Photon. Technol. Lett., vol. 16, no. 5, pp. 1304-1306, May 2004.

C. De Boor, "On calculating with B-splines", J. Approx. Theory, vol. 6, no. 1, pp. 50-62, 1972.

C. De Boor, "On uniform approximation by splines", J. Approx. Theory, vol. 1, no. 1, pp. 219-235, 1968.

I. J. Schoenberg, "Contribution to the problem of approximation of equidistant data by analytic functions", Quart. Appl. Math., vol. 4, no. 1, pp. 45-99, 1946.

G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. New York: The Johns Hopkins Univ. Press, 1996.

R. B. Sidje, "EXPOKIT: Software package for computing matrix exponentials", ACM Trans. Math. Softw., vol. 24, no. 1, pp. 130-158, 1998.

L. N. Trefethen and D. Bau III, Numerical Linear Algebra, Philadelphia, PA: SIAM, 1997.

T. Lyche and K. Morken, "A discrete approach to knot removal and degree reduction for splines," in Algorithms for Approximations, J. C. Mason, and M. G. Cox, Eds. Oxford: U.K.: Clarendon, 1987, pp. 67-82.

H. Schwetlick and T. Schutze, "Least square approximation by splines with free knots", Nordisk Tidskrift for InformationsBehandling, vol. 35, no. 3, pp. 361-384, 1995.