Abstract

Detailed simulations identify which optical components affect the performance of a radio frequency (RF) and optical comb generator based on an optical loop with a phase modulator. The simulations suggest that the topology of the loop can be modified to give a flatter RF spectrum and a greater resilience to fluctuations in the optical phase length of the loop. Furthermore, a method of filtering the laser's output to reduce the noise floor of the RF comb is proposed and verified. The simulations show that the linewidth of the source is critical to good performance, as are the quality of the sawtooth and the short-term phase stability of the loop. However, the amplified spontaneous emission noise (ASE) from the optical amplifier within the loop is relatively unimportant.

© 2005 IEEE

PDF Article

References

  • View by:
  • |

  1. S. Bennett, B. Cai, E. Burr, O. Gough and A. J. Seeds, "1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications", IEEE Photon. Technol. Lett., vol. 11, no. 5, pp. 551-553, May 1999.
  2. S. Fukushima, C. F. C. Silva, Y. Muramoto and A. J. Seeds, "Optoelectronic millimetre-wave synthesis using an optical frequency comb generator, optically injection locked lasers and a unitravelling-carrier photodiode", J. Lightw. Technol., vol. 21, no. 12, pp. 3044-3051, Dec. 2003.
  3. M. Shen and R. A. Minasian, "Photonics-based optical frequency comb generation", in Conf. Proc. CD-ROM, Australian Conf. Optical Fibre Communications (ACOFT/AOS'04), Canberra, Australia,Jul. 5-8 2004,www.acoft-aos.org,. pp. 1-3.
  4. A. Goutzoulis and K. Davies, "Hardware-compressive 2-D fiber optic delay line architecture for time steering of phased-array antennas", Appl. Opt., vol. 29, no. 36, pp. 5353-5359, 1990.
  5. R. A. Minasian and K. E. Alameh, "Optical-fiber grating-based beamforming network for microwave phased arrays", IEEE Trans. Microw. Theory Tech., vol. 45, no. 8, pp. 1513-1518, Aug. 1997.
  6. K. P. Ho and J. M. Kahn, "Optical frequency comb generator using phase modulation in amplified circulating loop", IEEE Photon. Technol. Lett., vol. 5, no. 6, pp. 721-725, Jun. 1993.
  7. K. K. Wong and R. M. De La Rue, "Electrooptic-waveguide frequency translator in LiNbO3 fabricated by proton exchange", Opt. Lett., vol. 7, no. 11, pp. 546-548, 1982.
  8. M. Izutsu, S. Shikama and T. Sueta, "Integrated optical SSB modulator/frequency shifter", IEEE J. Quantum Electron., vol. QE-17, no. 11, pp. 2225-2227, Nov. 1981.
  9. I. Tomita, H. Sanjoh, E. Yamada and Y. Yoshikuni, "Novel method for generating multiple wavelengths by pulsed serrodyne modulation", IEEE Photon. Technol. Lett., vol. 15, no. 9, pp. 1204-1206, Sep. 2003.
  10. L. Johnson and C. Cox, "Serrodyne optical frequency translation with high sideband suppression", J. Lightw. Technol., vol. 6, no. 1, pp. 109-111, Jan. 1988.
  11. A. J. Lowery, et al. "Multiple signal representation of photonic devices, systems and networks", IEEE J. Sel. Top. Quantum Electron., vol. 6, no. 2, pp. 282-296, Mar./Apr. 2000.
  12. A. J. Lowery, "Effect of laser intensity and frequency noise on an optical signal processing circuit", in Conf. Proc. CD-ROM, Australian Conf. Optical Fibre Communications (ACOFT/AOS), Canberra, Australia,Jul. 5-8 2004,www.acoft-aos.org.

Other (12)

S. Bennett, B. Cai, E. Burr, O. Gough and A. J. Seeds, "1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications", IEEE Photon. Technol. Lett., vol. 11, no. 5, pp. 551-553, May 1999.

S. Fukushima, C. F. C. Silva, Y. Muramoto and A. J. Seeds, "Optoelectronic millimetre-wave synthesis using an optical frequency comb generator, optically injection locked lasers and a unitravelling-carrier photodiode", J. Lightw. Technol., vol. 21, no. 12, pp. 3044-3051, Dec. 2003.

M. Shen and R. A. Minasian, "Photonics-based optical frequency comb generation", in Conf. Proc. CD-ROM, Australian Conf. Optical Fibre Communications (ACOFT/AOS'04), Canberra, Australia,Jul. 5-8 2004,www.acoft-aos.org,. pp. 1-3.

A. Goutzoulis and K. Davies, "Hardware-compressive 2-D fiber optic delay line architecture for time steering of phased-array antennas", Appl. Opt., vol. 29, no. 36, pp. 5353-5359, 1990.

R. A. Minasian and K. E. Alameh, "Optical-fiber grating-based beamforming network for microwave phased arrays", IEEE Trans. Microw. Theory Tech., vol. 45, no. 8, pp. 1513-1518, Aug. 1997.

K. P. Ho and J. M. Kahn, "Optical frequency comb generator using phase modulation in amplified circulating loop", IEEE Photon. Technol. Lett., vol. 5, no. 6, pp. 721-725, Jun. 1993.

K. K. Wong and R. M. De La Rue, "Electrooptic-waveguide frequency translator in LiNbO3 fabricated by proton exchange", Opt. Lett., vol. 7, no. 11, pp. 546-548, 1982.

M. Izutsu, S. Shikama and T. Sueta, "Integrated optical SSB modulator/frequency shifter", IEEE J. Quantum Electron., vol. QE-17, no. 11, pp. 2225-2227, Nov. 1981.

I. Tomita, H. Sanjoh, E. Yamada and Y. Yoshikuni, "Novel method for generating multiple wavelengths by pulsed serrodyne modulation", IEEE Photon. Technol. Lett., vol. 15, no. 9, pp. 1204-1206, Sep. 2003.

L. Johnson and C. Cox, "Serrodyne optical frequency translation with high sideband suppression", J. Lightw. Technol., vol. 6, no. 1, pp. 109-111, Jan. 1988.

A. J. Lowery, et al. "Multiple signal representation of photonic devices, systems and networks", IEEE J. Sel. Top. Quantum Electron., vol. 6, no. 2, pp. 282-296, Mar./Apr. 2000.

A. J. Lowery, "Effect of laser intensity and frequency noise on an optical signal processing circuit", in Conf. Proc. CD-ROM, Australian Conf. Optical Fibre Communications (ACOFT/AOS), Canberra, Australia,Jul. 5-8 2004,www.acoft-aos.org.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.