Abstract

Static and dynamic measurements are performed with GaAs oxide-confined vertical-cavity surface-emitting lasers (VCSELs), using multimode fibers with a core diameter of 50 and 62.5 m and different numerical apertures (NAs). They show that a small NA can have a severe impact on the eye opening and thus also on the bit-error rate. The measurements are analyzed with a spatiotemporal two-dimensional (2-D) multimode VCSEL model. The required parameter extraction for the model is verified with small-and large-signal measurements. The analysis shows that the change of the eye opening can be explained by the interaction between the mode-and the current-injection profile, carrier diffusion, and intermodal gain compression (IGC). IGC increases differences in the modal power distribution caused by the interaction between the mode profiles and the current-injection profile. Carrier diffusion is able to compensate these increased differences of the modal power distribution. Its impact, however, on dynamic changes caused by IGC is moderate.

© 2005 IEEE

PDF Article

References

  • View by:
  • |

  1. K. Iga, "Vertical-cavity surface-emitting laser: Introduction and review," in Vertical-Cavity Surface-Emitting Laser Devices, Berlin: Germany: Springer, 2003, pp. 1-27.
  2. W. W. Chow, K. D. Choquette and S. W. Koch, "Physics of the gain medium in vertical-cavity surface-emitting semiconductor lasers," in Vertical-Cavity Surface-Emitting Laser Devices, Berlin: Germany: Springer, 2003, pp. 31-51.
  3. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, Chichester: U.K.: Wiley, 1995.
  4. A. G. P. Agrawal and N. K. Dutta, Long-Wavelength Semiconductor Lasers, New York: Van Nostrand Reinhold Co., 1986.
  5. K. Petermann, "External optical feedback phenomena in semiconductor lasers", IEEE J. Sel. Top. Quantum Electron., vol. 1, no. 2, pp. 480-489, Jun. 1995.
  6. J. Helms, "Intermodulation and harmonic distortions of laser diodes with optical feedback", J. Lightw. Technol., vol. 9, no. 11, pp. 1567-1575, Nov. 1991.
  7. L. N. Langley and K. A. Shore, "The effect of external optical feedback on timing jitter in modulated laser diodes", J. Lightw. Technol., vol. 11, no. 3, pp. 434-441, Mar. 1993.
  8. K. Petermann, Laser Diode Modulation and Noise, Amsterdam: The Netherlands: Kluwer, 1988.
  9. A. Hsu, "Optical feedback in vertical-cavity surface-emitting lasers", IEEE J. Quantum Electron., vol. 37, no. 12, pp. 1643-1649, Dec. 2001.
  10. M. Jungo, D. Erni and W. Bchtold, "VISTAS: A comprehensive system-oriented spatiotemporal VCSEL-model", IEEE J. Sel. Top. Quantum Electron., vol. 9, no. 3, pp. 939-948, May/Jun. 2003.
  11. M. Jungo, "Spatiotemporal vertical-cavity surface-emitting laser model for advanced simulations of optical links", Dissertation ETH Nr. 14982, Swiss Federal Institute of Technology, Zurich, Switzerland, 2003.
  12. "VISTAS: (VCSEL Integrated Spatio-Temporal Advanced Simulator) free download location",
  13. D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold and K. H. Gulden, "10 Gbit/s VCSELs for Datacom: Devices and applications", in Proc. SPIE, Brugge, Belgium, 2002, pp. 4942-4945.
  14. S. Eitel, S. G. Hunziker, D. Vez, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner and K. H. Gulden, "Multimode VCSELs for high bit-rate and transparent low-cost fiber-optic links", in Proc. SPIE, vol. 4649, 2002, pp. 183-190.
  15. R. S. Tucker and D. J. Pope, "Circuit modeling of the effect of diffusion on damping in a narrow-stripe semiconductor laser", IEEE J. Quantum Electron., vol. QE-19, no. 7, pp. 1179-1183, Jul. 1983.
  16. G. P. Agrawal, "Gain nonlinearities in semiconductor lasers: Theory and application to distributed feedback lasers", J. Quantum Electron., vol. QE-23, no. 6, pp. 860-868, Jun. 1987.
  17. J. Mulet and S. Balle, "Spatio-temporal modeling of the optical properties of VCSELs in the presence of polarization effects", IEEE J. Quantum Electron., vol. 38, no. 3, pp. 291-305, Jan. 2002.
  18. J. J. Morikuni, P. V. Mena, A. V. Harton, K. W. Wyatt and S.-M. Kang, "Spatially independent VCSEL models for the simulation of diffusive turn-off transients", J. Lightw. Technol., vol. 17, no. 1, pp. 95-102, Jan. 1999.
  19. P. V. Mena, J. J. Morikuni, S.-M. Kang, A. V. Harton and K. W. Wyatt, "A comprehensive circuit-level model of vertical-cavity surface-emitting lasers", J. Lightw. Technol., vol. 17, no. 12, pp. 2612-2632, Dec. 1999.
  20. K. D. Coquette, W. W. Chow, G. R. Hadley, H. Q. Hou and K. M. Geib, "Scalability of small-aperture selectively oxidized vertical cavity lasers", Appl. Phys. Lett., vol. 70, no. 7, pp. 823-825, Feb. 1997.
  21. A. W. Snyder and J. D. Love, Optical Waveguide Theory, London: U.K.: Chapman & Hall, 1983.
  22. C. N. Kurtz and W. Streifer, "Guided waves in inhomogeneous focusing media Part I: Formulation, solution for quadratic inhomogeneity", IEEE Trans. Microw. Theory Tech., vol. MTT-17, no. 1, pp. 11-15, Jan. 1969.
  23. C. N. Kurtz and W. Streifer, "Guided waves in inhomogeneous focusing media Part II: Asymptotic solution for general weak inhomogeneity", IEEE Trans. Microw. Theory Tech., vol. MTT-17, no. 5, pp. 250-253, May 1969.
  24. N. Delen and B. Hooker, "Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: A fast Fourier transform approach", J. Opt. Soc. Amer. A, vol. 15, no. 4, pp. 857-867, Apr. 1998.
  25. J. W. Goodman, Introduction to Fourier Optics, 1st ed. New York: McGraw-Hill, 1968.
  26. A. Valle, J. Sarma and K. A. Shore, "Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes", IEEE J. Quantum Electron., vol. 31, no. 8, pp. 1423-1431, Aug. 1995.
  27. B. N. Gomatam and A. P. Defonzo, "Theory of hot carrier effects on nonlinear gain in GaAs-GaAlAs lasers and amplifiers", J. Quantum Electron., vol. 26, no. 10, pp. 1689-1704, Oct. 1990.
  28. M. Willatzen, A. Uskov, J. Mork, H. Olsen, B. Tromborg and A. P. Jauho, "Nonlinear gain suppression in semiconductor lasers due to carrier heating", IEEE Photon. Technol. Lett., vol. 3, no. 7, pp. 606-609, Jul. 1991.
  29. W. W. Chow, H. C. Schneider, S. W. Koch, C. H. Chang, L. Chrostowski and C. J. Chang-Hasnain, "Nonequilibrium model for semiconductor laser modulation response", IEEE J. Quantum Electron., vol. 38, no. 4, pp. 402-409, Apr. 2002.
  30. M. Streiff, A. Witzig, M. Pfeiffer, P. Royo and W. Fichtner, "A comprehensive VCSEL device simulator", IEEE J. Sel. Top. Quantum Electron., vol. 9, no. 3, pp. 879-891, May-Jun. 2003.
  31. D. Vez, "850 nm VCSELs for high-speed fiber optic data communications and radio over fiber transmission", Dissertation ETH Nr. 15870, Swiss Federal Institute of Technology, Zurich, Switzerland, 2005.

Other (31)

K. Iga, "Vertical-cavity surface-emitting laser: Introduction and review," in Vertical-Cavity Surface-Emitting Laser Devices, Berlin: Germany: Springer, 2003, pp. 1-27.

W. W. Chow, K. D. Choquette and S. W. Koch, "Physics of the gain medium in vertical-cavity surface-emitting semiconductor lasers," in Vertical-Cavity Surface-Emitting Laser Devices, Berlin: Germany: Springer, 2003, pp. 31-51.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, Chichester: U.K.: Wiley, 1995.

A. G. P. Agrawal and N. K. Dutta, Long-Wavelength Semiconductor Lasers, New York: Van Nostrand Reinhold Co., 1986.

K. Petermann, "External optical feedback phenomena in semiconductor lasers", IEEE J. Sel. Top. Quantum Electron., vol. 1, no. 2, pp. 480-489, Jun. 1995.

J. Helms, "Intermodulation and harmonic distortions of laser diodes with optical feedback", J. Lightw. Technol., vol. 9, no. 11, pp. 1567-1575, Nov. 1991.

L. N. Langley and K. A. Shore, "The effect of external optical feedback on timing jitter in modulated laser diodes", J. Lightw. Technol., vol. 11, no. 3, pp. 434-441, Mar. 1993.

K. Petermann, Laser Diode Modulation and Noise, Amsterdam: The Netherlands: Kluwer, 1988.

A. Hsu, "Optical feedback in vertical-cavity surface-emitting lasers", IEEE J. Quantum Electron., vol. 37, no. 12, pp. 1643-1649, Dec. 2001.

M. Jungo, D. Erni and W. Bchtold, "VISTAS: A comprehensive system-oriented spatiotemporal VCSEL-model", IEEE J. Sel. Top. Quantum Electron., vol. 9, no. 3, pp. 939-948, May/Jun. 2003.

M. Jungo, "Spatiotemporal vertical-cavity surface-emitting laser model for advanced simulations of optical links", Dissertation ETH Nr. 14982, Swiss Federal Institute of Technology, Zurich, Switzerland, 2003.

"VISTAS: (VCSEL Integrated Spatio-Temporal Advanced Simulator) free download location",

D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold and K. H. Gulden, "10 Gbit/s VCSELs for Datacom: Devices and applications", in Proc. SPIE, Brugge, Belgium, 2002, pp. 4942-4945.

S. Eitel, S. G. Hunziker, D. Vez, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner and K. H. Gulden, "Multimode VCSELs for high bit-rate and transparent low-cost fiber-optic links", in Proc. SPIE, vol. 4649, 2002, pp. 183-190.

R. S. Tucker and D. J. Pope, "Circuit modeling of the effect of diffusion on damping in a narrow-stripe semiconductor laser", IEEE J. Quantum Electron., vol. QE-19, no. 7, pp. 1179-1183, Jul. 1983.

G. P. Agrawal, "Gain nonlinearities in semiconductor lasers: Theory and application to distributed feedback lasers", J. Quantum Electron., vol. QE-23, no. 6, pp. 860-868, Jun. 1987.

J. Mulet and S. Balle, "Spatio-temporal modeling of the optical properties of VCSELs in the presence of polarization effects", IEEE J. Quantum Electron., vol. 38, no. 3, pp. 291-305, Jan. 2002.

J. J. Morikuni, P. V. Mena, A. V. Harton, K. W. Wyatt and S.-M. Kang, "Spatially independent VCSEL models for the simulation of diffusive turn-off transients", J. Lightw. Technol., vol. 17, no. 1, pp. 95-102, Jan. 1999.

P. V. Mena, J. J. Morikuni, S.-M. Kang, A. V. Harton and K. W. Wyatt, "A comprehensive circuit-level model of vertical-cavity surface-emitting lasers", J. Lightw. Technol., vol. 17, no. 12, pp. 2612-2632, Dec. 1999.

K. D. Coquette, W. W. Chow, G. R. Hadley, H. Q. Hou and K. M. Geib, "Scalability of small-aperture selectively oxidized vertical cavity lasers", Appl. Phys. Lett., vol. 70, no. 7, pp. 823-825, Feb. 1997.

A. W. Snyder and J. D. Love, Optical Waveguide Theory, London: U.K.: Chapman & Hall, 1983.

C. N. Kurtz and W. Streifer, "Guided waves in inhomogeneous focusing media Part I: Formulation, solution for quadratic inhomogeneity", IEEE Trans. Microw. Theory Tech., vol. MTT-17, no. 1, pp. 11-15, Jan. 1969.

C. N. Kurtz and W. Streifer, "Guided waves in inhomogeneous focusing media Part II: Asymptotic solution for general weak inhomogeneity", IEEE Trans. Microw. Theory Tech., vol. MTT-17, no. 5, pp. 250-253, May 1969.

N. Delen and B. Hooker, "Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: A fast Fourier transform approach", J. Opt. Soc. Amer. A, vol. 15, no. 4, pp. 857-867, Apr. 1998.

J. W. Goodman, Introduction to Fourier Optics, 1st ed. New York: McGraw-Hill, 1968.

A. Valle, J. Sarma and K. A. Shore, "Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes", IEEE J. Quantum Electron., vol. 31, no. 8, pp. 1423-1431, Aug. 1995.

B. N. Gomatam and A. P. Defonzo, "Theory of hot carrier effects on nonlinear gain in GaAs-GaAlAs lasers and amplifiers", J. Quantum Electron., vol. 26, no. 10, pp. 1689-1704, Oct. 1990.

M. Willatzen, A. Uskov, J. Mork, H. Olsen, B. Tromborg and A. P. Jauho, "Nonlinear gain suppression in semiconductor lasers due to carrier heating", IEEE Photon. Technol. Lett., vol. 3, no. 7, pp. 606-609, Jul. 1991.

W. W. Chow, H. C. Schneider, S. W. Koch, C. H. Chang, L. Chrostowski and C. J. Chang-Hasnain, "Nonequilibrium model for semiconductor laser modulation response", IEEE J. Quantum Electron., vol. 38, no. 4, pp. 402-409, Apr. 2002.

M. Streiff, A. Witzig, M. Pfeiffer, P. Royo and W. Fichtner, "A comprehensive VCSEL device simulator", IEEE J. Sel. Top. Quantum Electron., vol. 9, no. 3, pp. 879-891, May-Jun. 2003.

D. Vez, "850 nm VCSELs for high-speed fiber optic data communications and radio over fiber transmission", Dissertation ETH Nr. 15870, Swiss Federal Institute of Technology, Zurich, Switzerland, 2005.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.