Abstract

A theoretical model to numerically study the local space-charge field induced by light in a photorefractive crystal biased with two independent,perpendicularly oriented external static fields is introduced. This model appears attractive because it allows varying, in the crystal transverse plane,of the orientation of the external biasing static field with respect to that of the optical-field vector, then enhancing the tensorial properties of the crystal. The numerical analysis has revealed that, in a nonconventional biasing configuration, the spatial distributions of the space-charge-field vector transversal components exhibit a further anisotropy that has not been shown up to now. Nevertheless, from a practical point of view, such a boundary configuration could allow better management of the focusing characteristics of the material.

© 2005 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription