Abstract

The benefits of using submicrometer modal-dimension silicon waveguides in realizing high-efficiency parametric Raman wavelength conversion are demonstrated theoretically and experimentally. The combined effects of Raman nonlinearities and free-carrier losses induced by two-photon absorption (TPA) are analyzed using the coupled-mode theory. The analysis indicates that scaling down the lateral dimensions increases the conversion efficiency of the Raman process and reduces the effective lifetime of free carriers and hence ameliorates the free-carrier losses. The feasibility of data conversion is demonstrated by coherent transfer of the analog radio-frequency (RF) signal from Stokes to anti-Stokes channels. The conversion efficiency, and hence signal-to-noise ratio (SNR), and bandwidth of the conversion process are found to be limited by the phase mismatch between the pump, Stokes, and anti-Stokes fields. The dispersion properties of submicrometer waveguides are also studied from the point of view of achieving phase matching and enhancing the conversion efficiency.

© 2005 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription