Abstract

A distributed sensor system for detecting and locating intruders based on the phase-sensitive optical-time-domain reflectometer ( \phi-OTDR) is described. The sensing element is a cabled single-mode telecommunications fiber buried along the monitored perimeter. Light pulses from a continuous-wave Er:fiber Fabry-Pérot laser with a narrow (\approx 3 kHz) instantaneous linewidth and low (few kilohertz per second) frequency drift are injected into one end of the fiber, and the backscattered light is monitored with a photodetector. The effect of phase changes resulting from the pressure of the intruder on the ground immediately above the buried fiber are sensed by subtracting a \phi-OTDR trace from an earlier stored trace. In laboratory tests with fiber on reels, the effects of localized phase perturbations induced by a piezoelectric fiber stretcher on \phi-OTDR traces were observed. In field tests, people walking on the ground above a buried fiber cable induced phase shifts of several-\pi radians.

© 2005 IEEE

PDF Article

References

  • View by:
  • |

  1. M. K. Barnoski and S. M. Jensen, "Fiber waveguides: A novel technique for investigating attenuation characteristics", Appl. Opt., vol. 15, pp. 2112-2115, 1976.
  2. B. Costa and B. Sordo, "Experimental study of optical fiber attenuation by a modified backscattering technique", in Dig. 3rd Eur. Conf. Optical Communication (ECOC), 1977, p. 69.
  3. M. K. Barnoski, M. D. Rourke, S. M. Jensen and R. T. Melville, "Optical time domain reflectometer", Appl. Opt. , vol. 16, pp. 2375-2380, 1977.
  4. H. F. Taylor and C. E. Lee, "Apparatus and method for fiber optic intrusion sensing", U.S. Patent 5 194 847, Mar. 16, 1993.
  5. S. V. Shatalin, V. N. Treschikov and A. J. Rogers, "Interferometric optical time-domain reflectometry for distributed optical-fiber sensing", Appl. Opt., vol. 37, pp. 5600 -5604, 1998.
  6. W. Seo, "Fiber optic intrusion sensor investigation", Ph.D. dissertation, Dept. of Electrical Engineering,Texas A&M Univ., Aug. 1994.
  7. J. Park and H. F. Taylor, "Fiber optic intrusion sensor using coherent optical time domain reflectometer", Jpn. J. Appl. Phys., vol. 42, pp. 3481-3482, 2003.
  8. K. N. Choi and H. F. Taylor, "Spectrally stable Er:fiber laser for application in phase-sensitive optical time-domain reflectometry", IEEE Photon. Technol. Lett., vol. 15, no. 3, pp. 386-389, Mar. 2003.
  9. J. P. Dakin, D. A. J. Pearce, A. P. Strong and C. A. Wade, "A novel distributed fiber sensing system enabling location of disturbances in a Sagnac loop interferometer", in Proc. SPIE, vol. 838, 1987, pp. 325-328.
  10. E. Udd, "Sagnac distributed sensor conceptst", in Proc. SPIE , vol. 1586, 1991, pp. 46-52.
  11. M. Campbell, G. Zheng, P. A. Wallace and A. S. Holmes-Smith, "A distributed stress sensor based on a birefringent fiber Sagnac ring", in Proc. SPIE, vol. 2838, 1996, pp. 138-142.
  12. A. A. Chtcherbakov, P. L. Swart and S. J. Spammer, "Dual wavelength Sagnac-Michelson distributed optical fiber sensor", in Proc. SPIE, vol. 2838, 1996, pp. 301-307.
  13. X. Fang, "Fiber-optic distributed sensing by a two-loop Sagnac interferometer", Opt. Lett., vol. 21, pp. 444-446, 1996.
  14. X. Fang, "A variable-loop Sagnac interferometer for distributed impact sensing", J. Lightw. Technol., vol. 14, no. 10, pp. 2250-2254, Oct. 1996.
  15. S. J. Russell, K. R. C. Brady and J. P. Dakin, "Real-time location of multiple time-varying strain disturbances, acting over a 40-km fiber section, using a novel dual-Sagnac interferometer", J. Lightw. Technol., vol. 19, no. 2, pp. 205-213, Feb. 2001.
  16. K. N. Choi, J. C. Juarez and H. F. Taylor, "Distributed fiber-optic pressure/seismic sensor for low-cost monitoring of long perimeters", in Proc. SPIE, vol. 5090, 2003, pp. 134-141.
  17. A. H. Hartog and M. P. Gold, "On the theory of backscattering in single mode-fiber optical fibers", J. Lightw. Technol. , vol. 2, no. 2, pp. 76-82, Apr. 1984.
  18. A. Havstead, Y. Xie, A. B. Sahin, Z. Pan, A. E. Willner and B. Fischer, "Delayed self-heterodyne interferometer measurement of narrow linewidth fiber lasers", in Conf. Lasers Electro-Optics (CLEO), May 2000, pp. 310-311.
  19. T. Okoshi, K. Kikuchi and A. Yakayama, "Novel method for high resolution measurement of laser output spectrum", Electron. Lett., vol. 16, pp. 630-631, 1981.
  20. Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming and D. N. Payne, "Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter", Opt. Lett., vol. 20, pp. 875-877, 1995.
  21. G. Bonfrate, F. Vaninetti and F. Negrisolo, "Single-frequency MOPA Er3+ DBR fiber laser for WDM digital telecommunication systems", IEEE Photon. Technol. Lett., vol. 10, no. 8, pp. 1109 -1111, Aug. 1998.
  22. C.-C. Lee, Y.-K. Chen and S.-K. Liaw, "Single-longitudinal mode fiber laser with a passive multiple-ring cavity and its application for video transmission", Opt. Lett., vol. 23, pp. 358-360, 1998.

Appl. Opt. (2)

Opt. Lett. (3)

Other (17)

G. Bonfrate, F. Vaninetti and F. Negrisolo, "Single-frequency MOPA Er3+ DBR fiber laser for WDM digital telecommunication systems", IEEE Photon. Technol. Lett., vol. 10, no. 8, pp. 1109 -1111, Aug. 1998.

X. Fang, "A variable-loop Sagnac interferometer for distributed impact sensing", J. Lightw. Technol., vol. 14, no. 10, pp. 2250-2254, Oct. 1996.

S. J. Russell, K. R. C. Brady and J. P. Dakin, "Real-time location of multiple time-varying strain disturbances, acting over a 40-km fiber section, using a novel dual-Sagnac interferometer", J. Lightw. Technol., vol. 19, no. 2, pp. 205-213, Feb. 2001.

K. N. Choi, J. C. Juarez and H. F. Taylor, "Distributed fiber-optic pressure/seismic sensor for low-cost monitoring of long perimeters", in Proc. SPIE, vol. 5090, 2003, pp. 134-141.

A. H. Hartog and M. P. Gold, "On the theory of backscattering in single mode-fiber optical fibers", J. Lightw. Technol. , vol. 2, no. 2, pp. 76-82, Apr. 1984.

A. Havstead, Y. Xie, A. B. Sahin, Z. Pan, A. E. Willner and B. Fischer, "Delayed self-heterodyne interferometer measurement of narrow linewidth fiber lasers", in Conf. Lasers Electro-Optics (CLEO), May 2000, pp. 310-311.

T. Okoshi, K. Kikuchi and A. Yakayama, "Novel method for high resolution measurement of laser output spectrum", Electron. Lett., vol. 16, pp. 630-631, 1981.

B. Costa and B. Sordo, "Experimental study of optical fiber attenuation by a modified backscattering technique", in Dig. 3rd Eur. Conf. Optical Communication (ECOC), 1977, p. 69.

M. K. Barnoski, M. D. Rourke, S. M. Jensen and R. T. Melville, "Optical time domain reflectometer", Appl. Opt. , vol. 16, pp. 2375-2380, 1977.

H. F. Taylor and C. E. Lee, "Apparatus and method for fiber optic intrusion sensing", U.S. Patent 5 194 847, Mar. 16, 1993.

W. Seo, "Fiber optic intrusion sensor investigation", Ph.D. dissertation, Dept. of Electrical Engineering,Texas A&M Univ., Aug. 1994.

J. Park and H. F. Taylor, "Fiber optic intrusion sensor using coherent optical time domain reflectometer", Jpn. J. Appl. Phys., vol. 42, pp. 3481-3482, 2003.

K. N. Choi and H. F. Taylor, "Spectrally stable Er:fiber laser for application in phase-sensitive optical time-domain reflectometry", IEEE Photon. Technol. Lett., vol. 15, no. 3, pp. 386-389, Mar. 2003.

J. P. Dakin, D. A. J. Pearce, A. P. Strong and C. A. Wade, "A novel distributed fiber sensing system enabling location of disturbances in a Sagnac loop interferometer", in Proc. SPIE, vol. 838, 1987, pp. 325-328.

E. Udd, "Sagnac distributed sensor conceptst", in Proc. SPIE , vol. 1586, 1991, pp. 46-52.

M. Campbell, G. Zheng, P. A. Wallace and A. S. Holmes-Smith, "A distributed stress sensor based on a birefringent fiber Sagnac ring", in Proc. SPIE, vol. 2838, 1996, pp. 138-142.

A. A. Chtcherbakov, P. L. Swart and S. J. Spammer, "Dual wavelength Sagnac-Michelson distributed optical fiber sensor", in Proc. SPIE, vol. 2838, 1996, pp. 301-307.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.