Abstract

The dynamics of coherent clock recovery (CR) using self-pulsing two-section distributed feedback (TS-DFB) lasers have been investigated. Both simulation and experimental results indicate fast lockup and walk-off of the clock-recovery process on the order of nanoseconds. Phase stability of the recovered clock from a pseudorandom bit sequence (PRBS) signal can be achieved by limiting the detuning between the frequency of free-running self-pulsation and the input bit rate. The simulation results show that all-optical clock recovery using TS-DFB lasers can maintain a better than 5% clock phase stability for large variations in power, bit rate, and optical carrier frequency of the input data and therefore is suitable for applications in optical packet switching.

© 2005 IEEE

PDF Article

References

  • View by:
  • |

  1. A. Miras-Legros, E. Legros, L. Giraudet, G. Wanlin, S. Vuye and C. Joly, "Very high gain, high sensitivity, 40 GHz narrow-band photo-receiver for clock recovery", Electron. Lett., vol. 34, no. 3, pp. 297-299, 1998.
  2. K. Murata and Y. Yamane, "40 Gbit/s fully monolithic clock recovery IC using InAlAs/InGaAs/InP HEMTs", Electron. Lett., vol. 36, no. 19, pp. 1617-1618, 2000 .
  3. W. Mao, Y. Li, M. Al-Mumin and G. Li, "All-optical clock recovery from RZ-format data by using a two-section gain-coupled DFB laser", J. Lightw. Technol., vol. 20, no. 9, pp. 1705-1714, Sep. 2002.
  4. W. Mao, X. Wang, M. Al-Munin and G. Li, "40 Gb/s all-optical clock recovery using three section self-pulsation DFB lasers", in Proc. Optical Fiber Communications Conf. (OFC 2000),, pp. 79-80.
  5. W. Mao and G. Li, "Ultrafast wavelength and polarization insensitive all-optical clock recovery", in Optical Fiber Communications Conf. (OFC) , Anaheim, CA, 2001.
  6. W. Mao, Y. Li, M. Al-Mumin and G. Li, "40 Gbit/s all-optical clock recovery using two-section gain-coupled DFB laser and semiconductor optical amplifier", Electron. Lett., vol. 37, no. 21, pp. 1302-1303, 2001.
  7. Y. Li and G. Li, "80 Gbit/s all-optical clock recovery using two-sectin gain-coupled DFB laser", Electron. Lett., vol. 38, no. 15, pp. 892-893, 2002.
  8. G. Li, Y. Li and W. Mao, "All-optical clock recovery using self-pulsing two-section gain-coupled DFB lasers", in IEEE/LEOS Summer Topicals 2002,, pp. TuO2-31-TuO2-32.
  9. B. Sartorius, S. Bauer, C. Bornoldt, M. Möhrle, H.-P. Nolting and J. Slovak, "All-optical clock recovery for signal processing and regeneration", in IEEE/LEOS Summer Topicals 2002,, pp. TuO1-29-TuO1-30.
  10. W. Mao, Y. Li, M. Al-Mumin and G. Li, "All-optical clock recovery for both RZ and NRZ data", IEEE Photon. Technol. Lett., vol. 14, no. 6, pp. 873-875, Jun. 2002.
  11. Y. Li, C. Kim, G. Li, Y. Kaneko, R. L. Jungerman and O. Buccafusca, "Wavelength and polarization insensitive all-optical clock recovery from 96-Gb/s data by using a two-section gain-coupled DFB laser", IEEE. Photon. Technol. Lett., vol. 15, no. 4, pp. 590-592, Apr. 2003.
  12. M. W. Chbat, P. A. Perrier and P. R. Prucnal, "Optical clock recovery demonstration using periodic oscillations of a hybrid electrooptic bistable system", IEEE Photon. Tehnol. Lett., vol. 3, no. 1, pp. 65-67, Jan. 1991.
  13. X. S. Yao and G. Lutes, "A high-speed photonic clock and carrier recovery device", IEEE Photon. Tehnol. Lett., vol. 8, no. 5, pp. 688-690, May 1996.
  14. X. Wang and G. Li, "Spatiotemporal dynamics and high-frequency self-pulsations in two-section distributed feedback lasers", J. Opt. Soc. Amer. B, vol. 16, no. 11, pp. 2030-2039, 1999 .
  15. X. Wang, W. Mao, M. Al-Mumin, S. A. Pappert, J. Hong and G. Li, "Optical generation of microwave/millimeter-wave signals using two-section gain-coupled DFB lasers", IEEE. Photon. Technol. Lett., vol. 11, no. 10, pp. 1292 -1294, Oct. 1999.
  16. M. Al-Mumin, X. Wang, W. Mao, S. A. Papper and G. Li, "Optical generation and sideband injection locking of tunable 11-120 GHz microwave/millimeter signals", Electron. Lett., vol. 36, no. 18, pp. 1547-1548, 2000.
  17. Y. M. Mohrle, C. Bornholdt, O. Brox, S. Bauer and B. Sartorius, "Multi-section DFB lasers for high speed signal processing/regeneration", in Proc. Optical Fiber Communications Conf. (OFC 2002),, pp. 136-138.
  18. B. Sartorius, M. Mohrle and U. Feiste, "12-64 GHz continuous frequency tuning in self-pulsation 1.55-µ m multiquantum-well DFB lasers", IEEE J. Sel. Topics Quantum Electron., vol. 1, no. 2, pp. 535-538, Jun. 1995.
  19. L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll and R. G. S. Plumb, "Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model", IEEE J. Quantum Electron., vol. 30, no. 6, pp. 1389-1395, Jun. 1994.
  20. H. Wenzel and U. Bandelow, "Self pulsations by mode degeneracy in two-section DFB lasers", in Proc. SPIE, vol. 2399, 1995, pp. 195- 206.
  21. W. Mao, "High speed all-optical clock recovery and 3r regeneration", Ph.D. dissertation, College of Engineering, Univ. of Central Florida, Orlando, FL, 2001. .
  22. C. Kim and G. Li, "Hybrid RZ to CSRZ format conversion", Electron. Lett., to be published.
  23. K. Sato, S. Kuwahara, Y. Miyamoto, K. Murata and H. Miyazawa, "Mode-locked lasers for 43-Gb/s carrier-suppressed return-to-zero pulse generation", in Proc. Eur. Conf. Optical Communication (ECOC 2001), Amsterdam, Netherlands, 2001, pp. 340-341.
  24. R. Lang, "Injection locking properties of a semiconductor laser", IEEE J. Quantum Electron., vol. 18, no. 6, pp. 976-983, Jun. 1982.
  25. F. Mogensen, H. Olesen and a. G. Jacobsen, "Locking conditions and stability properties for a semiconductor laser with external light injection", IEEE J. Quantum Electron., vol. 21, no. 7, pp. 784-793, Jul. 1985.
  26. I. Petitbon, P. Gallion, G. Debarge and C. Chabran, "Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser", IEEE J. Quantum Electron., vol. 24, no. 2, pp. 148-154, Feb. 1988.
  27. R. Hui, "Optical PSK modulation using injection-locked DFB semiconductor lasers", IEEE Phonton. Technol. Lett., vol. 2, no. 10, pp. 743-746, Oct. 1990.
  28. A. Vizzino, M. Gioannini and I. Montrosset, "Dynamic simulation of clock recovery with self-pulsating three-section DFB lasers", IEEE J. Quantum Electron., vol. 38, no. 12, pp. 1580 -1586, Dec. 2002.
  29. H. Urkowitz, Signal Theory and Random Processes, Norwood, MA: Artech House, 1983, pp. 65-76.
  30. P. Rees, P. McEvoy, A. Valle, J. O'Gorman, S. Lynch, P. Landais, L. Pesquera and J. Hegarty, "A theoretical analysis of optical clock extraction using a self-pulsating laser diode", IEEE J. Quantum Electron., vol. 35, no. 2, pp. 221-227, Feb. 1999.
  31. C. A. Eldering, F. Herrerias-Martin, R. Martin-Gomez and P. J. Garcia-Arribas, "Digital burst mode clock recovery technique for fiber-optic systems", J. Lightw. Tehnol., vol. 12, no. 2, pp. 271-279, Feb. 1994.

Other (31)

A. Miras-Legros, E. Legros, L. Giraudet, G. Wanlin, S. Vuye and C. Joly, "Very high gain, high sensitivity, 40 GHz narrow-band photo-receiver for clock recovery", Electron. Lett., vol. 34, no. 3, pp. 297-299, 1998.

K. Murata and Y. Yamane, "40 Gbit/s fully monolithic clock recovery IC using InAlAs/InGaAs/InP HEMTs", Electron. Lett., vol. 36, no. 19, pp. 1617-1618, 2000 .

W. Mao, Y. Li, M. Al-Mumin and G. Li, "All-optical clock recovery from RZ-format data by using a two-section gain-coupled DFB laser", J. Lightw. Technol., vol. 20, no. 9, pp. 1705-1714, Sep. 2002.

W. Mao, X. Wang, M. Al-Munin and G. Li, "40 Gb/s all-optical clock recovery using three section self-pulsation DFB lasers", in Proc. Optical Fiber Communications Conf. (OFC 2000),, pp. 79-80.

W. Mao and G. Li, "Ultrafast wavelength and polarization insensitive all-optical clock recovery", in Optical Fiber Communications Conf. (OFC) , Anaheim, CA, 2001.

W. Mao, Y. Li, M. Al-Mumin and G. Li, "40 Gbit/s all-optical clock recovery using two-section gain-coupled DFB laser and semiconductor optical amplifier", Electron. Lett., vol. 37, no. 21, pp. 1302-1303, 2001.

Y. Li and G. Li, "80 Gbit/s all-optical clock recovery using two-sectin gain-coupled DFB laser", Electron. Lett., vol. 38, no. 15, pp. 892-893, 2002.

G. Li, Y. Li and W. Mao, "All-optical clock recovery using self-pulsing two-section gain-coupled DFB lasers", in IEEE/LEOS Summer Topicals 2002,, pp. TuO2-31-TuO2-32.

B. Sartorius, S. Bauer, C. Bornoldt, M. Möhrle, H.-P. Nolting and J. Slovak, "All-optical clock recovery for signal processing and regeneration", in IEEE/LEOS Summer Topicals 2002,, pp. TuO1-29-TuO1-30.

W. Mao, Y. Li, M. Al-Mumin and G. Li, "All-optical clock recovery for both RZ and NRZ data", IEEE Photon. Technol. Lett., vol. 14, no. 6, pp. 873-875, Jun. 2002.

Y. Li, C. Kim, G. Li, Y. Kaneko, R. L. Jungerman and O. Buccafusca, "Wavelength and polarization insensitive all-optical clock recovery from 96-Gb/s data by using a two-section gain-coupled DFB laser", IEEE. Photon. Technol. Lett., vol. 15, no. 4, pp. 590-592, Apr. 2003.

M. W. Chbat, P. A. Perrier and P. R. Prucnal, "Optical clock recovery demonstration using periodic oscillations of a hybrid electrooptic bistable system", IEEE Photon. Tehnol. Lett., vol. 3, no. 1, pp. 65-67, Jan. 1991.

X. S. Yao and G. Lutes, "A high-speed photonic clock and carrier recovery device", IEEE Photon. Tehnol. Lett., vol. 8, no. 5, pp. 688-690, May 1996.

X. Wang and G. Li, "Spatiotemporal dynamics and high-frequency self-pulsations in two-section distributed feedback lasers", J. Opt. Soc. Amer. B, vol. 16, no. 11, pp. 2030-2039, 1999 .

X. Wang, W. Mao, M. Al-Mumin, S. A. Pappert, J. Hong and G. Li, "Optical generation of microwave/millimeter-wave signals using two-section gain-coupled DFB lasers", IEEE. Photon. Technol. Lett., vol. 11, no. 10, pp. 1292 -1294, Oct. 1999.

M. Al-Mumin, X. Wang, W. Mao, S. A. Papper and G. Li, "Optical generation and sideband injection locking of tunable 11-120 GHz microwave/millimeter signals", Electron. Lett., vol. 36, no. 18, pp. 1547-1548, 2000.

Y. M. Mohrle, C. Bornholdt, O. Brox, S. Bauer and B. Sartorius, "Multi-section DFB lasers for high speed signal processing/regeneration", in Proc. Optical Fiber Communications Conf. (OFC 2002),, pp. 136-138.

B. Sartorius, M. Mohrle and U. Feiste, "12-64 GHz continuous frequency tuning in self-pulsation 1.55-µ m multiquantum-well DFB lasers", IEEE J. Sel. Topics Quantum Electron., vol. 1, no. 2, pp. 535-538, Jun. 1995.

L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll and R. G. S. Plumb, "Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model", IEEE J. Quantum Electron., vol. 30, no. 6, pp. 1389-1395, Jun. 1994.

H. Wenzel and U. Bandelow, "Self pulsations by mode degeneracy in two-section DFB lasers", in Proc. SPIE, vol. 2399, 1995, pp. 195- 206.

W. Mao, "High speed all-optical clock recovery and 3r regeneration", Ph.D. dissertation, College of Engineering, Univ. of Central Florida, Orlando, FL, 2001. .

C. Kim and G. Li, "Hybrid RZ to CSRZ format conversion", Electron. Lett., to be published.

K. Sato, S. Kuwahara, Y. Miyamoto, K. Murata and H. Miyazawa, "Mode-locked lasers for 43-Gb/s carrier-suppressed return-to-zero pulse generation", in Proc. Eur. Conf. Optical Communication (ECOC 2001), Amsterdam, Netherlands, 2001, pp. 340-341.

R. Lang, "Injection locking properties of a semiconductor laser", IEEE J. Quantum Electron., vol. 18, no. 6, pp. 976-983, Jun. 1982.

F. Mogensen, H. Olesen and a. G. Jacobsen, "Locking conditions and stability properties for a semiconductor laser with external light injection", IEEE J. Quantum Electron., vol. 21, no. 7, pp. 784-793, Jul. 1985.

I. Petitbon, P. Gallion, G. Debarge and C. Chabran, "Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser", IEEE J. Quantum Electron., vol. 24, no. 2, pp. 148-154, Feb. 1988.

R. Hui, "Optical PSK modulation using injection-locked DFB semiconductor lasers", IEEE Phonton. Technol. Lett., vol. 2, no. 10, pp. 743-746, Oct. 1990.

A. Vizzino, M. Gioannini and I. Montrosset, "Dynamic simulation of clock recovery with self-pulsating three-section DFB lasers", IEEE J. Quantum Electron., vol. 38, no. 12, pp. 1580 -1586, Dec. 2002.

H. Urkowitz, Signal Theory and Random Processes, Norwood, MA: Artech House, 1983, pp. 65-76.

P. Rees, P. McEvoy, A. Valle, J. O'Gorman, S. Lynch, P. Landais, L. Pesquera and J. Hegarty, "A theoretical analysis of optical clock extraction using a self-pulsating laser diode", IEEE J. Quantum Electron., vol. 35, no. 2, pp. 221-227, Feb. 1999.

C. A. Eldering, F. Herrerias-Martin, R. Martin-Gomez and P. J. Garcia-Arribas, "Digital burst mode clock recovery technique for fiber-optic systems", J. Lightw. Tehnol., vol. 12, no. 2, pp. 271-279, Feb. 1994.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.