Abstract

We have developed a Fresnel diffraction analysis that provides an analytic expression for the passband response of virtually imaged phased-array (VIPA) demultiplexers. Our analysis shows that although the passband can be inherently symmetric, a strong asymmetry can develop when the output plane is detuned longitudinally. The symmetric passband has the minimum -3 dB transmission bandwidth. We also identify a spatial chirp effect that arises when the passband becomes asymmetric. Our theoretical predictions are confirmed via experiment. The experimental results include a demonstration of a hyperfine wavelength demultiplexing response with 10 pm (1.25 GHz) -3 dB transmission bandwidth.

© 2005 IEEE

PDF Article

References

  • View by:
  • |

  1. K. Takada, M. Abe, T. Shibata and K. Okamoto, "10-GHz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWGs", IEEE Photon. Technol. Lett., vol. 13, no. 6, pp. 577-578, 2001.
  2. M. Shirasaki, "Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer", Opt. Lett., vol. 21, pp. 366-368, 1996.
  3. M. Shirasaki, A. N. Akhter and C. Lin, "Virtually imaged phased array with graded reflectivity", IEEE Photon. Technol. Lett., vol. 11, pp. 1443-1445, 1999.
  4. M. Shirasaki, "Chromatic-dispersion compensator using virtually imaged phased array", IEEE Photon. Technol. Lett., vol. 9, pp. 1598-1560, 1997.
  5. M. Shirasaki, "Compensation of chromatic dispersion and dispersion slope using a virtually imaged phased array", in Opt. Fiber Commun. Conf. TuS1-3, 2001.
  6. M. Shirasaki, "Virtually imaged phased array (VIPA) having air between reflecting surfaces", Patent 5 969 866, Oct. 19, 1999.
  7. M. Shirasaki, "Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion", Pub. US 20030021046, Jan. 30, 2003.
  8. T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles and P. J. Delfyett, "Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser", IEEE Photon. Technol. Lett., vol. 14, no. 11, pp. 1608-1610, 2002.
  9. M. Currie, F. K. Fatemi and J. W. Lou, "Increasing laser repetition rate by spectral elimination", in CThPDA8, Conf. Laser and Electro Optics, Baltimore, MD, Jun. 1-6 2003.
  10. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators", Rev. Sci. Instrum., vol. 71, no. 5, pp. 1929-1960, 2000.
  11. D. E. Leaird and A. M. Weiner, "Femtosecond direct space-to-time pulse shaping", IEEE J. Quantum Electron., vol. 37, no. 4, pp. 494-504, 2001.
  12. S. Xiao, J. D. McKinney and A. M. Weiner, "Photonic microwave arbitrary waveform generation using a virtually-imaged phased-array (VIPA) direct space-to-time pulse shaper", IEEE Photon. Technol. Lett., vol. 16, pp. 1936-1938, 2004.
  13. S. Xiao, A. M. Weiner and C. Lin, "Demultiplexers with 10 pm (1.25 GHz) -3 dB transmission bandwidth using a virtually imaged phased array (VIPA)", in TuL1, Optical Fiber Commun. Conf., Los Angeles, CA, Feb. 22-27 2004.
  14. A. Vega, A. M. Weiner and C. Lin, "Generalized grating equation for virtually-imaged phased-array spectral dispersers", Appl. Opt., vol. 42, pp. 4152-4155, 2003.
  15. M. C. Parker and S. D. Walker, "Design of AWG's using hybrid Fourier-Fresnel transform techniques", in J. Sel. Topics Quantum Electron., vol. 6, 1999, pp. 1379-1384.
  16. M. C. Parker and S. D. Walker, "A Fourier-Fresnel integral-based transfer function model for a near-parabolic phase-profile arrayed-waveguide grating", IEEE Photon. Technol. Lett., vol. 11, pp. 1018 -1020, 1999.
  17. O. Lummer and E. Gehrcke, "Ann. D. Physik", vol. 10, pp. 457-477, 1903.
  18. M. Born and E. Wolf, Principles of Optics, Cambridge: U.K.: Cambridge University, 1999, pp. 359-386.
  19. S. Xiao, A. M. Weiner and C. Lin, "A dispersion law for virtually-imaged phased-array based on paraxial wave theory", IEEE J. Quantum Electron., vol. 40, no. 4, pp. 420-426, 2004.
  20. S. Xiao, A. M. Weiner and C. Lin, "Spatial chirp effect in virtually-imaged phased-array wavelength demultiplexers", in CWP6, Conf. Lasers Electro Opt., Baltimore, MD, Jun. 1-6 2003.
  21. J. W. Goodman, Introduction to Fourier Optics, San Francisco, CA: McGraw-Hill, 1968, pp. 77-96.
  22. H. A. Haus, Waves and Fields in Optoelectronics, Englewood Cliffs, NJ: Prentice-Hall, 1984, pp. 81-107.
  23. L. Yang, "Analytical treatment of virtual image phase array", in WS3, Optical Fiber Commun. Conf., Anaheim, CA, Mar. 17-22 2002.
  24. D. Marcuse, "Gaussian approximation of the fundamental modes of graded-index fibers", J. Opt. Soc. Amer., vol. 68, pp. 103-109, 1978.

Appl. Opt.

Opt. Lett.

Other

M. Shirasaki, A. N. Akhter and C. Lin, "Virtually imaged phased array with graded reflectivity", IEEE Photon. Technol. Lett., vol. 11, pp. 1443-1445, 1999.

M. Shirasaki, "Chromatic-dispersion compensator using virtually imaged phased array", IEEE Photon. Technol. Lett., vol. 9, pp. 1598-1560, 1997.

M. Shirasaki, "Compensation of chromatic dispersion and dispersion slope using a virtually imaged phased array", in Opt. Fiber Commun. Conf. TuS1-3, 2001.

M. Shirasaki, "Virtually imaged phased array (VIPA) having air between reflecting surfaces", Patent 5 969 866, Oct. 19, 1999.

M. Shirasaki, "Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion", Pub. US 20030021046, Jan. 30, 2003.

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles and P. J. Delfyett, "Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser", IEEE Photon. Technol. Lett., vol. 14, no. 11, pp. 1608-1610, 2002.

M. Currie, F. K. Fatemi and J. W. Lou, "Increasing laser repetition rate by spectral elimination", in CThPDA8, Conf. Laser and Electro Optics, Baltimore, MD, Jun. 1-6 2003.

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators", Rev. Sci. Instrum., vol. 71, no. 5, pp. 1929-1960, 2000.

D. E. Leaird and A. M. Weiner, "Femtosecond direct space-to-time pulse shaping", IEEE J. Quantum Electron., vol. 37, no. 4, pp. 494-504, 2001.

S. Xiao, J. D. McKinney and A. M. Weiner, "Photonic microwave arbitrary waveform generation using a virtually-imaged phased-array (VIPA) direct space-to-time pulse shaper", IEEE Photon. Technol. Lett., vol. 16, pp. 1936-1938, 2004.

S. Xiao, A. M. Weiner and C. Lin, "Demultiplexers with 10 pm (1.25 GHz) -3 dB transmission bandwidth using a virtually imaged phased array (VIPA)", in TuL1, Optical Fiber Commun. Conf., Los Angeles, CA, Feb. 22-27 2004.

M. C. Parker and S. D. Walker, "Design of AWG's using hybrid Fourier-Fresnel transform techniques", in J. Sel. Topics Quantum Electron., vol. 6, 1999, pp. 1379-1384.

M. C. Parker and S. D. Walker, "A Fourier-Fresnel integral-based transfer function model for a near-parabolic phase-profile arrayed-waveguide grating", IEEE Photon. Technol. Lett., vol. 11, pp. 1018 -1020, 1999.

O. Lummer and E. Gehrcke, "Ann. D. Physik", vol. 10, pp. 457-477, 1903.

M. Born and E. Wolf, Principles of Optics, Cambridge: U.K.: Cambridge University, 1999, pp. 359-386.

S. Xiao, A. M. Weiner and C. Lin, "A dispersion law for virtually-imaged phased-array based on paraxial wave theory", IEEE J. Quantum Electron., vol. 40, no. 4, pp. 420-426, 2004.

S. Xiao, A. M. Weiner and C. Lin, "Spatial chirp effect in virtually-imaged phased-array wavelength demultiplexers", in CWP6, Conf. Lasers Electro Opt., Baltimore, MD, Jun. 1-6 2003.

J. W. Goodman, Introduction to Fourier Optics, San Francisco, CA: McGraw-Hill, 1968, pp. 77-96.

H. A. Haus, Waves and Fields in Optoelectronics, Englewood Cliffs, NJ: Prentice-Hall, 1984, pp. 81-107.

L. Yang, "Analytical treatment of virtual image phase array", in WS3, Optical Fiber Commun. Conf., Anaheim, CA, Mar. 17-22 2002.

D. Marcuse, "Gaussian approximation of the fundamental modes of graded-index fibers", J. Opt. Soc. Amer., vol. 68, pp. 103-109, 1978.

K. Takada, M. Abe, T. Shibata and K. Okamoto, "10-GHz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWGs", IEEE Photon. Technol. Lett., vol. 13, no. 6, pp. 577-578, 2001.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.