Abstract

This paper reports a novel optical-time-division-mutliplexing (OTDM)/wavelength-division-multiplexing (WDM) source based on spectral slicing of a Kerr-lens mode-locked Cr4+-YAG femtosecond laser. This mode-locked laser produces bandwidth-limited pulses having durations of 70 fs and corresponding spectral widths of 40 nm. This bandwidth is sufficiently large that an arrayed-waveguide grating (AWG) could be employed to spectrally slice the laser output into 32 different wavelength channels. A total capacity of 1.36 Tb/s (32 x 40.64 Gb/s) with measured Q factors of 8 to 13 is achieved. The spectral efficiency is 0.4 b/s/Hz.

© 2005 IEEE

PDF Article

References

  • View by:
  • |

  1. H. Ooi, K. Nakamura, Y. Akiyama, T. Takahara, J. Kumasako, J. C. Rasmussen, T. Terahara, Y. Kawahata, H. Isono, G. Ishikawa and N. Yamaguchi, "3.5 Tbit/s (43 Gbit/s x 88 ch) transmission over 600 km NZDSF with VIPA variable dispersion compensators", in Proc. Optical Fiber Communication Conf. Exhibit (OFC), 2002, pp. 555-556.
  2. K. Fukuchi, "Wideband and ultra-dense WDM transmission technologies toward over 10-Tb/s capacity", in Proc. Optical Fiber Communication Conf. Exhibit (OFC), 2002, pp. 558-559.
  3. J. X. Cai, M. Nissov, C. R. Davidson, A. N. Pilipetskii, G. Mohs, H. Li, Y. Cai, E. A. Golovchenko, A. J. Lucero, D. G. Foursa and N. S. Bergano, "Long-haul 40 Gb/s DWDM transmission with aggregate capacities exceeding 1 Tb/s", J. Lightw. Technol., vol. 20, no. 12, pp. 2247-2257, Dec. 2003.
  4. J. S. Lee, Y. C. Chung and D. J. DiGiovanni, "Spectrum-sliced fiber amplifier light source for multichannel WDM applications", IEEE Photon. Technol. Lett., vol. 5, no. 12, pp. 1458-1461, Dec. 1993.
  5. W. T. Holloway, A. J. Keating and D. D. Sampson, "Multiwavelength source for spectrum-sliced WDM access networks and LANs", IEEE Photon. Technol. Lett., vol. 9, no. 7, pp. 1014-1016, Jul. 1997.
  6. C. D. Su and L. A. Wang, "Multiwavelength fiber sources based on double-pass superfluorescent fiber sources", J. Lightw. Technol., vol. 18, no. 5, pp. 708-714, May 2000.
  7. G. J. Pendock and D. D. Sampson, "Transmission performance of high bit rate spectrum-sliced WDM systems", J. Lightw. Technol., vol. 14, no. 10, pp. 2141-2147, Oct. 1996.
  8. S. S. Wagner, H. Kobrinski, T. J. Robe, H. L. Lemberg and L. S. Smoot, "Experimental demonstration of a passive optical subscriber loop architecture", Electron. Lett., vol. 26, pp. 696-697, 1990.
  9. G. Murtaza and J. M. Senior, "Optical crosstalk prediction for LED based analogue WDM systems", Proc. Inst. Elect. Eng. Optoelectron. , vol. 142, no. 5, pp. 225-231, 1995.
  10. A. J. Keating and D. D. Sampson, "Reduction of excess intensity noise in spectrum-sliced incoherent light for WDM applications", J. Lightw. Technol., vol. 15, no. 1, pp. 53-61, Jan. 1997.
  11. J. S. Han, J. W. Ko, J. S. Lee and S. Y. Shin, "0.1 nm narrow bandwidth transition of a 2.5 Gb/s spectrum-sliced incoherent light channel using an all-optical bandwidth expansion technique at the receiver", IEEE Photon. Technol. Lett., vol. 10, pp. 1501-1503, 1998.
  12. E. A. DeSouza, M. C. Nuss, W. H. Knox and D. A. B. Miller, "Wavelength-division multiplexing with femtosecond pulses", Opt. Lett., vol. 20, p. 1166, 1995.
  13. H. Sanjoh, H. Yasaka, Y. Sakai, K. Sato, H. Ishii and Y. Yoshikuni, "Multiwavelength light source with precise frequency spacing using a mode-locked semiconductor laser and an arrayed waveguide grating fiber", IEEE Photon. Technol. Lett., vol. 9, no. 6, p. 818, Jun. 1997.
  14. B. C. Collings, M. L. Mitchell, L. Boivin and W. H. Knox, "A 1021-channel WDM system", IEEE Photon. Technol. Lett., vol. 12, no. 7, pp. 906-908, Jul. 2000.
  15. T. Morioka, K. Mori, S. Kawanishi and M. Saruwatari, "Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing Ld-pumped supercontinuum in optical fibers", IEEE Photon. Technol. Lett., vol. 6, no. 3, p. 365, Mar. 1994.
  16. J. J. Veselka and S. K. Korotky, "A multiwavelength source having precise channel spacing for WDM systems", IEEE Photon. Technol. Lett., vol. 10, p. 958, 1998.
  17. O. Boyraz, J. Kim, M. N. Islam, F. Coppinger and B. Jalali, "10 Gb/s multiple wavelength, coherent short pulse source based on spectral carving of supercontinuum generated in fibers", J. Lightw. Technol., vol. 18, no. 12, pp. 2167-2175, Dec. 2000.
  18. L. Boivin and B. C. Colling, "Spectrum slicing of coherent sources in optical communications", Optical Fiber Technology, vol. 7, pp. 1-20, 2001.
  19. E. Yamada, H. Takara, T. Ohara, K. Sato and T. Morioka, "A high SNR, 150 ch supercontinuum CW optical source with precise 25 GHz spacing for 10 Gbit/s DWDM systems", in Proc. Optical Fiber Communications Conf. (OFC), vol. 1, Anaheim, CA, Mar. 19-23 2001, pp. ME2-1-ME2-3.
  20. T. Tomaru and H. Petek, "Femtosecond Cr4+:YAG laser with an L-fold cavity operating at 1.2 GHz repetition rate", Opt. Lett., vol. 25, pp. 584-586, 2000.
  21. C. G. Leburn, A. A. Lagatsky, C. T. A. Brown and W. Sibbett, "Femtosecond Cr4+:YAG laser with a 4 GHz pulse repetition rate", in Proc. Advanced Solid State Physics (ASSP), Santa Fe, NM, Feb. 1-4 2004,WE4.
  22. C. G. Leburn, A. A. Lagatsky, C. T. A. Brown and W. Sibbett, "Femtosecond Cr4+:YAG laser with 4 GHz pulse repetition rate", Electron. Lett., vol. 40, no. 13, pp. 805-806, Jun. 24, 2004.
  23. M. Hayduk, S. Johns and M. Krol, "Chromium laser produces femtosecond pulses", Laser Focus World, vol. 32, no. 12, pp. 73-74, Dec. 1996.
  24. H. Eilers, W. Dennis, W. Yen, S. Kück, K. Peterman, G. Huber and W. Jai, "Performance of a Cr:YAG laser", IEEE J. Quantum Electron., vol. 29, no. 9, pp. 2508-2512, Sep. 1993.
  25. P. French, N. Rizvi and J. Taylor, "Continuous-wave mode-locked Cr4+:YAG laser", Opt. Lett., vol. 18, no. 1, pp. 39-41, Jan. 1993.
  26. T. Sorokina, S. Naumov, E. Sorokin, E. Wintner and A. V. Shestakov, "Directly diode-pumped tunable continuous-wave room-temperature Cr4+YAG laser", Opt. Lett., vol. 24, no. 22, pp. 1578 -1580, Nov. 1999.
  27. A. Sennaroglu, C. Pollock and H. Nathel, "Continuous-wave self-mode-locked operation of a femtosecond Cr4+:YAG laser", Opt. Lett., vol. 19, no. 6, pp. 390-392, Mar. 1994.
  28. B. C. Collings, K. Bergman and W. H. Knox, "True fundamental solitons in a passively mode-locked short-cavity Cr4+:YAG laser", Opt. Lett., vol. 22, no. 14, pp. 1098-1100, Jul. 1994.
  29. M. Ramaswamy-Paye and J. G. Fujimoto, "Compact dispersion-compensating geometry for Kerr-lens mode-locked femtosecond lasers", Opt. Lett., vol. 19, no. 21, pp. 1756-1758, Nov. 1994.

Opt. Lett.

Other

H. Ooi, K. Nakamura, Y. Akiyama, T. Takahara, J. Kumasako, J. C. Rasmussen, T. Terahara, Y. Kawahata, H. Isono, G. Ishikawa and N. Yamaguchi, "3.5 Tbit/s (43 Gbit/s x 88 ch) transmission over 600 km NZDSF with VIPA variable dispersion compensators", in Proc. Optical Fiber Communication Conf. Exhibit (OFC), 2002, pp. 555-556.

K. Fukuchi, "Wideband and ultra-dense WDM transmission technologies toward over 10-Tb/s capacity", in Proc. Optical Fiber Communication Conf. Exhibit (OFC), 2002, pp. 558-559.

J. X. Cai, M. Nissov, C. R. Davidson, A. N. Pilipetskii, G. Mohs, H. Li, Y. Cai, E. A. Golovchenko, A. J. Lucero, D. G. Foursa and N. S. Bergano, "Long-haul 40 Gb/s DWDM transmission with aggregate capacities exceeding 1 Tb/s", J. Lightw. Technol., vol. 20, no. 12, pp. 2247-2257, Dec. 2003.

J. S. Lee, Y. C. Chung and D. J. DiGiovanni, "Spectrum-sliced fiber amplifier light source for multichannel WDM applications", IEEE Photon. Technol. Lett., vol. 5, no. 12, pp. 1458-1461, Dec. 1993.

W. T. Holloway, A. J. Keating and D. D. Sampson, "Multiwavelength source for spectrum-sliced WDM access networks and LANs", IEEE Photon. Technol. Lett., vol. 9, no. 7, pp. 1014-1016, Jul. 1997.

C. D. Su and L. A. Wang, "Multiwavelength fiber sources based on double-pass superfluorescent fiber sources", J. Lightw. Technol., vol. 18, no. 5, pp. 708-714, May 2000.

G. J. Pendock and D. D. Sampson, "Transmission performance of high bit rate spectrum-sliced WDM systems", J. Lightw. Technol., vol. 14, no. 10, pp. 2141-2147, Oct. 1996.

S. S. Wagner, H. Kobrinski, T. J. Robe, H. L. Lemberg and L. S. Smoot, "Experimental demonstration of a passive optical subscriber loop architecture", Electron. Lett., vol. 26, pp. 696-697, 1990.

G. Murtaza and J. M. Senior, "Optical crosstalk prediction for LED based analogue WDM systems", Proc. Inst. Elect. Eng. Optoelectron. , vol. 142, no. 5, pp. 225-231, 1995.

A. J. Keating and D. D. Sampson, "Reduction of excess intensity noise in spectrum-sliced incoherent light for WDM applications", J. Lightw. Technol., vol. 15, no. 1, pp. 53-61, Jan. 1997.

J. S. Han, J. W. Ko, J. S. Lee and S. Y. Shin, "0.1 nm narrow bandwidth transition of a 2.5 Gb/s spectrum-sliced incoherent light channel using an all-optical bandwidth expansion technique at the receiver", IEEE Photon. Technol. Lett., vol. 10, pp. 1501-1503, 1998.

E. A. DeSouza, M. C. Nuss, W. H. Knox and D. A. B. Miller, "Wavelength-division multiplexing with femtosecond pulses", Opt. Lett., vol. 20, p. 1166, 1995.

H. Sanjoh, H. Yasaka, Y. Sakai, K. Sato, H. Ishii and Y. Yoshikuni, "Multiwavelength light source with precise frequency spacing using a mode-locked semiconductor laser and an arrayed waveguide grating fiber", IEEE Photon. Technol. Lett., vol. 9, no. 6, p. 818, Jun. 1997.

B. C. Collings, M. L. Mitchell, L. Boivin and W. H. Knox, "A 1021-channel WDM system", IEEE Photon. Technol. Lett., vol. 12, no. 7, pp. 906-908, Jul. 2000.

T. Morioka, K. Mori, S. Kawanishi and M. Saruwatari, "Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing Ld-pumped supercontinuum in optical fibers", IEEE Photon. Technol. Lett., vol. 6, no. 3, p. 365, Mar. 1994.

J. J. Veselka and S. K. Korotky, "A multiwavelength source having precise channel spacing for WDM systems", IEEE Photon. Technol. Lett., vol. 10, p. 958, 1998.

O. Boyraz, J. Kim, M. N. Islam, F. Coppinger and B. Jalali, "10 Gb/s multiple wavelength, coherent short pulse source based on spectral carving of supercontinuum generated in fibers", J. Lightw. Technol., vol. 18, no. 12, pp. 2167-2175, Dec. 2000.

L. Boivin and B. C. Colling, "Spectrum slicing of coherent sources in optical communications", Optical Fiber Technology, vol. 7, pp. 1-20, 2001.

E. Yamada, H. Takara, T. Ohara, K. Sato and T. Morioka, "A high SNR, 150 ch supercontinuum CW optical source with precise 25 GHz spacing for 10 Gbit/s DWDM systems", in Proc. Optical Fiber Communications Conf. (OFC), vol. 1, Anaheim, CA, Mar. 19-23 2001, pp. ME2-1-ME2-3.

C. G. Leburn, A. A. Lagatsky, C. T. A. Brown and W. Sibbett, "Femtosecond Cr4+:YAG laser with a 4 GHz pulse repetition rate", in Proc. Advanced Solid State Physics (ASSP), Santa Fe, NM, Feb. 1-4 2004,WE4.

C. G. Leburn, A. A. Lagatsky, C. T. A. Brown and W. Sibbett, "Femtosecond Cr4+:YAG laser with 4 GHz pulse repetition rate", Electron. Lett., vol. 40, no. 13, pp. 805-806, Jun. 24, 2004.

M. Hayduk, S. Johns and M. Krol, "Chromium laser produces femtosecond pulses", Laser Focus World, vol. 32, no. 12, pp. 73-74, Dec. 1996.

H. Eilers, W. Dennis, W. Yen, S. Kück, K. Peterman, G. Huber and W. Jai, "Performance of a Cr:YAG laser", IEEE J. Quantum Electron., vol. 29, no. 9, pp. 2508-2512, Sep. 1993.

P. French, N. Rizvi and J. Taylor, "Continuous-wave mode-locked Cr4+:YAG laser", Opt. Lett., vol. 18, no. 1, pp. 39-41, Jan. 1993.

T. Sorokina, S. Naumov, E. Sorokin, E. Wintner and A. V. Shestakov, "Directly diode-pumped tunable continuous-wave room-temperature Cr4+YAG laser", Opt. Lett., vol. 24, no. 22, pp. 1578 -1580, Nov. 1999.

A. Sennaroglu, C. Pollock and H. Nathel, "Continuous-wave self-mode-locked operation of a femtosecond Cr4+:YAG laser", Opt. Lett., vol. 19, no. 6, pp. 390-392, Mar. 1994.

B. C. Collings, K. Bergman and W. H. Knox, "True fundamental solitons in a passively mode-locked short-cavity Cr4+:YAG laser", Opt. Lett., vol. 22, no. 14, pp. 1098-1100, Jul. 1994.

M. Ramaswamy-Paye and J. G. Fujimoto, "Compact dispersion-compensating geometry for Kerr-lens mode-locked femtosecond lasers", Opt. Lett., vol. 19, no. 21, pp. 1756-1758, Nov. 1994.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.