Abstract

The performance of a wavelength-division multiplexing (WDM) optical network can be severely degraded due to fiber nonlinear effects. In the case where nonzero dispersion (NZD) fibers are employed, the four-wave mixing (FWM) effect sets an upper limit on the input power, especially in the case of narrow channel spacing. In order to reduce FWM-induced distortion two new techniques,the hybrid amplitude-/frequency-shift keying (ASK/FSK) modulation and the use of prechirped pulses are investigated. It is shown that both techniques can greatly improve the Q-factor in a 10 Gb/s WDM system. This happens even for very high input powers (~ 10 dBm), where the degradation of the conventional WDM system is prohibitively high. The proposed methods are also applied and tested in higher bit rates (40 Gb/s). It is deduced that although the hybrid ASK/FSK modulation technique marginally improves the system performance, the optical prechirp technique can still be used to greatly increase the maximum allowable input power of the system.

© 2005 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription